--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0424HMA13 results: [] --- # V0424HMA13 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6572 | 0.09 | 10 | 0.3872 | | 0.1981 | 0.18 | 20 | 0.1144 | | 0.1118 | 0.27 | 30 | 0.0984 | | 0.0959 | 0.36 | 40 | 0.0833 | | 0.0831 | 0.45 | 50 | 0.0732 | | 0.0945 | 0.54 | 60 | 0.0784 | | 0.0878 | 0.63 | 70 | 0.0747 | | 0.0786 | 0.73 | 80 | 0.0775 | | 0.0818 | 0.82 | 90 | 0.0726 | | 0.0794 | 0.91 | 100 | 0.0704 | | 0.0775 | 1.0 | 110 | 0.0680 | | 0.0616 | 1.09 | 120 | 0.0699 | | 0.0599 | 1.18 | 130 | 0.0760 | | 0.0732 | 1.27 | 140 | 0.0713 | | 0.0631 | 1.36 | 150 | 0.0712 | | 0.0722 | 1.45 | 160 | 0.0682 | | 0.0654 | 1.54 | 170 | 0.0810 | | 0.0808 | 1.63 | 180 | 0.0714 | | 0.1626 | 1.72 | 190 | 0.0920 | | 1.8023 | 1.81 | 200 | 0.4369 | | 0.1372 | 1.9 | 210 | 0.0750 | | 0.0738 | 1.99 | 220 | 0.0726 | | 0.0475 | 2.08 | 230 | 0.0786 | | 0.0444 | 2.18 | 240 | 0.0704 | | 0.0416 | 2.27 | 250 | 0.0661 | | 0.0371 | 2.36 | 260 | 0.0608 | | 0.0662 | 2.45 | 270 | 0.0548 | | 0.0309 | 2.54 | 280 | 0.0504 | | 0.0218 | 2.63 | 290 | 0.0492 | | 0.0228 | 2.72 | 300 | 0.0494 | | 0.0308 | 2.81 | 310 | 0.0490 | | 0.0263 | 2.9 | 320 | 0.0490 | | 0.0232 | 2.99 | 330 | 0.0488 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1