File size: 3,044 Bytes
22b5c3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: gemma
base_model: google/gemma-2b
tags:
- generated_from_trainer
model-index:
- name: G0428HMA4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# G0428HMA4
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1167
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8227 | 0.09 | 10 | 2.1171 |
| 1.6416 | 0.18 | 20 | 1.0605 |
| 0.6589 | 0.27 | 30 | 0.2594 |
| 0.1907 | 0.36 | 40 | 0.1623 |
| 0.1539 | 0.45 | 50 | 0.1509 |
| 0.1503 | 0.54 | 60 | 0.1492 |
| 0.1479 | 0.63 | 70 | 0.1475 |
| 0.1494 | 0.73 | 80 | 0.1482 |
| 0.1415 | 0.82 | 90 | 0.1490 |
| 0.1453 | 0.91 | 100 | 0.1474 |
| 0.1486 | 1.0 | 110 | 0.1482 |
| 0.1426 | 1.09 | 120 | 0.1473 |
| 0.1437 | 1.18 | 130 | 0.1473 |
| 0.1444 | 1.27 | 140 | 0.1464 |
| 0.1468 | 1.36 | 150 | 0.1456 |
| 0.1422 | 1.45 | 160 | 0.1481 |
| 0.143 | 1.54 | 170 | 0.1451 |
| 0.1426 | 1.63 | 180 | 0.1438 |
| 0.1436 | 1.72 | 190 | 0.1450 |
| 0.1398 | 1.81 | 200 | 0.1374 |
| 0.1353 | 1.9 | 210 | 0.1372 |
| 0.1339 | 1.99 | 220 | 0.1310 |
| 0.1229 | 2.08 | 230 | 0.1288 |
| 0.1229 | 2.18 | 240 | 0.1268 |
| 0.1209 | 2.27 | 250 | 0.1251 |
| 0.1238 | 2.36 | 260 | 0.1220 |
| 0.1223 | 2.45 | 270 | 0.1222 |
| 0.1151 | 2.54 | 280 | 0.1208 |
| 0.1131 | 2.63 | 290 | 0.1182 |
| 0.1129 | 2.72 | 300 | 0.1173 |
| 0.113 | 2.81 | 310 | 0.1168 |
| 0.1162 | 2.9 | 320 | 0.1167 |
| 0.1152 | 2.99 | 330 | 0.1167 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|