File size: 7,594 Bytes
f50e351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
license: openrail++
language:
- en
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
- stable-diffusion-xl
inference: true
widget:
- text: >-
    face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck
  example_title: example 1girl
- text: >-
    face focus, bishounen, masterpiece, best quality, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck
  example_title: example 1boy
library_name: diffusers
datasets:
- Linaqruf/animagine-datasets
---

<style>
  .title-container {
    display: flex;
    justify-content: center;
    align-items: center;
    height: 100vh; /* Adjust this value to position the title vertically */
  }
  .title {
    font-size: 3em;
    text-align: center;
    color: #333;
    font-family: 'Helvetica Neue', sans-serif;
    text-transform: uppercase;
    letter-spacing: 0.1em;
    padding: 0.5em 0;
    background: transparent;
  }
  .title span {
    background: -webkit-linear-gradient(45deg, #7ed56f, #28b485);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
  }
  .custom-table {
    table-layout: fixed;
    width: 100%;
    border-collapse: collapse;
    margin-top: 2em;
  }
  .custom-table td {
    width: 50%;
    vertical-align: top;
    padding: 10px;
    box-shadow: 0px 0px 10px 0px rgba(0,0,0,0.15);
  }
  .custom-image {
    width: 100%;
    height: auto;
    object-fit: cover;
    border-radius: 10px;
    transition: transform .2s; 
    margin-bottom: 1em;
  }
  .custom-image:hover {
    transform: scale(1.05);
  }
</style>

<h1 class="title"><span>Animagine XL</span></h1>

<table class="custom-table">
  <tr>
    <td>
      <a href="https://huggingface.co/Linaqruf/hermitage-xl/blob/main/sample_images/image1.png">
        <img class="custom-image" src="https://huggingface.co/Linaqruf/hermitage-xl/resolve/main/sample_images/image1.png" alt="sample1">
      </a>
      <a href="https://huggingface.co/Linaqruf/hermitage-xl/blob/main/sample_images/image3.png">
        <img class="custom-image" src="https://huggingface.co/Linaqruf/hermitage-xl/resolve/main/sample_images/image3.png" alt="sample3">
      </a>
    </td>
    <td>
      <a href="https://huggingface.co/Linaqruf/hermitage-xl/blob/main/sample_images/image2.png">
        <img class="custom-image" src="https://huggingface.co/Linaqruf/hermitage-xl/resolve/main/sample_images/image2.png" alt="sample2">
      </a>
      <a href="https://huggingface.co/Linaqruf/hermitage-xl/blob/main/sample_images/image4.png">
        <img class="custom-image" src="https://huggingface.co/Linaqruf/hermitage-xl/resolve/main/sample_images/image4.png" alt="sample4">
      </a>
    </td>
  </tr>
</table>

<hr>

## Overview

**Animagine** XL is a high-resolution, latent text-to-image diffusion model. The model has been fine-tuned using a learning rate of `4e-7` over 27000 global steps with a batch size of 16 on a curated dataset of superior-quality anime-style images. This model is derived from Stable Diffusion XL 1.0.

- Use it with the [`Stable Diffusion Webui`](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
- Use it with 🧨 [`diffusers`](https://huggingface.co/docs/diffusers/index)
- Use it with the [`ComfyUI`](https://github.com/comfyanonymous/ComfyUI) **(recommended)**

Like other anime-style Stable Diffusion models, it also supports Danbooru tags to generate images.

e.g. _**face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck**_


## Features

1. High-Resolution Images: The model trained with 1024x1024 resolution. The model is trained using [NovelAI Aspect Ratio Bucketing Tool](https://github.com/NovelAI/novelai-aspect-ratio-bucketing) so that it can be trained at non-square resolutions.
2. Anime-styled Generation: Based on given text prompts, the model can create high quality anime-styled images.
3. Fine-Tuned Diffusion Process: The model utilizes a fine-tuned diffusion process to ensure high quality and unique image output.

<hr>

## Model Details

- **Developed by:** [Linaqruf](https://github.com/Linaqruf)
- **Model type:** Diffusion-based text-to-image generative model
- **Model Description:** This is a model that can be used to generate and modify high quality anime-themed images based on text prompts. 
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
- **Finetuned from model:** [Stable Diffusion XL 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)

<hr>

## How to Use:
- Download `Animagine XL` [here](https://huggingface.co/Linaqruf/animagine-xl/resolve/main/animagine-xl.safetensors), the model is in `.safetensors` format.
- You need to use Danbooru-style tag as prompt instead of natural language, otherwise you will get realistic result instead of anime
- You can use any generic negative prompt or use the following suggested negative prompt to guide the model towards high aesthetic generationse:
```
lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
```
- And, the following should also be prepended to prompts to get high aesthetic results:
```
masterpiece, best quality, illustration, beautiful detailed, finely detailed, dramatic light, intricate details
```
- Use this cheat sheet to find the best resolution:
```
768 x 1344: Vertical (9:16)
915 x 1144: Portrait (4:5)
1024 x 1024: Square (1:1)
1182 x 886: Photo (4:3)
1254 x 836: Landscape (3:2)
1365 x 768: Widescreen (16:9)
1564 x 670: Cinematic (21:9)
```
<hr>

## 🧨 Diffusers 

Make sure to upgrade diffusers to >= 0.18.2:
```
pip install diffusers --upgrade
```

In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```

Running the pipeline (if you don't swap the scheduler it will run with the default **EulerDiscreteScheduler** in this example we are swapping it to **EulerAncestralDiscreteScheduler**:
```py
import torch
from torch import autocast
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

model = "Linaqruf/animagine-xl"
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")

pipe = StableDiffusionXLPipeline.from_pretrained(
    model, 
    torch_dtype=torch.float16, 
    use_safetensors=True, 
    variant="fp16",
    vae=vae
    )

pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')

prompt = "face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck"
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"

image = pipe(
    prompt, 
    negative_prompt=negative_prompt, 
    width=1024,
    height=1024,
    guidance_scale=12,
    target_size=(1024,1024),
    original_size=(4096,4096),
    num_inference_steps=50
    ).images[0]

image.save("anime_girl.png")
```
<hr>

## Limitation 
This model inherit Stable Diffusion XL 1.0 [limitation](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0#limitations)