File size: 20,720 Bytes
f6f337b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# coding=utf-8
# Copyright 2010, FLMR authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FLMR model configuration"""
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
FLMR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"LinWeizheDragon/PreFLMR_ViT-L": "https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/config.json",
"LinWeizheDragon/FLMR": "https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/config.json",
}
# Modified from transformers.models.clip.configuration_clip.CLIPVisionConfig with CLIP -> FLMR
class FLMRVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FLMRVisionModel`]. It is used to instantiate a
FLMR vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the FLMR
[openai/flmr-vit-base-patch32](https://huggingface.co/openai/flmr-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and vision projection layers.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import FLMRVisionConfig, FLMRVisionModel
>>> # Initializing a FLMRVisionConfig with LinWeizheDragon/FLMR style configuration
>>> configuration = FLMRVisionConfig()
>>> # Initializing a FLMRVisionModel (with random weights) from the LinWeizheDragon/FLMR style configuration
>>> model = FLMRVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flmr_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from a CLIPConfig
if config_dict.get("model_type") == "clip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
# Modified from transformers.models.dpr.configuration_dpr.DPRConfig with DPR -> FLMR
class FLMRTextConfig(PretrainedConfig):
r"""
[`FLMRTextConfig`] is the configuration class to store the configuration of a *FLMRTextModel*.
This is the configuration class to store the configuration of a [`FLMRTextModel`]. It is used to instantiate the components of the FLMR model according to the specified arguments,
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
configuration to that of the DPRContextEncoder
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
architecture.
This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the FLMR model. Defines the different tokens that can be represented by the *inputs_ids*
passed to the forward method of [`BertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
projection_dim (`int`, *optional*, defaults to 0):
Dimension of the projection for the context and question encoders. If it is set to zero (default), then no
projection is done.
Example:
```python
>>> from transformers import FLMRTextConfig, FLMRTextModel
>>> # Initializing a FLMR LinWeizheDragon/FLMR style configuration
>>> configuration = FLMRTextConfig()
>>> # Initializing a model (with random weights) from the LinWeizheDragon/FLMR style configuration
>>> model = FLMRTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flmr_text_model"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
projection_dim: int = 0,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.projection_dim = projection_dim
self.position_embedding_type = position_embedding_type
class FLMRConfig(PretrainedConfig):
r"""
[`FLMRConfig`] is the configuration class to store the configuration of a *FLMRModelForRetrieval*.
This is the configuration class to store the configuration of a [`FLMRModelForRetrieval`]. It is used to instantiate the components of the FLMR model according to the specified arguments,
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
configuration to that of the FLMR
[LinWeizheDragon/PreFLMR_ViT-G](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G)
architecture.
Args:
vision_config (`FLMRVisionConfig`, *optional*):
Configuration for the vision encoder.
text_config (`FLMRTextConfig`, *optional*):
Configuration for the text encoder.
mask_punctuation (`bool`, *optional*, defaults to `True`):
Whether to mask punctuation tokens in the input.
mapping_network_prefix_length (`int`, *optional*, defaults to 32):
The output length of the linear mapping network.
dim (`int`, *optional*, defaults to 128):
The late-interaction dimension of the model. The output of the text encoder, vision encoder, transformer mapping network should all be projected to this dimension for late-interaction scoring.
use_vision_encoder (`bool`, *optional*, defaults to `True`):
Whether to load the vision encoder. When no vision encoder is loaded, `image_features` should be used in the forward pass rather than `pixel_values`.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
separate_query_and_context_text_encoder (`bool`, *optional*, defaults to `False`):
Whether to use separate text encoders for query and context.
separate_query_and_context_vision_encoder (`bool`, *optional*, defaults to `False`):
Whether to use separate vision encoders for query and context.
query_concat_output_from_vision_encoder (`bool`, *optional*, defaults to `True`):
Whether to concatenate the output from the vision encoder to the output from the text encoder for the query.
query_concat_output_from_text_encoder (`bool`, *optional*, defaults to `True`):
Whether to concatenate the output from the text encoder to the output from the vision encoder for the query.
context_concat_output_from_vision_encoder (`bool`, *optional*, defaults to `False`):
Whether to concatenate the output from the vision encoder to the output from the text encoder for the context.
context_concat_output_from_text_encoder (`bool`, *optional*, defaults to `True`):
Whether to concatenate the output from the text encoder to the output from the vision encoder for the context.
use_transformer_mapping_network (`bool`, *optional*, defaults to `False`):
Whether to add a transformer mapping network to map the features from the vision encoder to the embedding space. This option is used in PreFLMR.
transformer_mapping_config_base (`str`, *optional*):
The base configuration for the transformer mapping network. This option is used in PreFLMR. An example of this argument is `bert-base-uncased`.
transformer_mapping_num_hidden_layers (`int`, *optional*):
The number of hidden layers in the transformer mapping network. This option is used in PreFLMR.
load_cpu_extension (`bool`, *optional*, defaults to `False`):
Whether to load the CPU extension. Only set this to `True` if a CPU is used in training and inference. In any case, GPU is recommended for training and inference.
mask_instruction_token (`str`, *optional*):
The token that indicates the end of the input instruction. All tokens before this token (the first one in a sequence) will be masked. This option is used in PreFLMR.
transformer_mapping_cross_attention_length (`int`, *optional*, defaults to 32):
The length of the cross attention in the transformer mapping network. This option is used in PreFLMR.
vision_model_version (`str`, *optional*, defaults to `"openai/clip-vit-base-patch32"`):
The version of the vision model being used in this FLMR model.
This option is used in performing retrieval only. Though it does not affect the model architecture, it is highly recommended to set this argument so that it properly reflects the version of the vision model being used in the FLMR model. This arugment will be saved in the model configuration, and it can be read by the indexing engine. The indexing engine will use this argument to initialize an image processor, which can process the input image files. Find more details under `examples/research_projects/flmr-retrieval`.
Example:
```python
>>> from transformers import FLMRConfig, FLMRModelForRetrieval
>>> # Initializing a FLMR LinWeizheDragon/FLMR style configuration
>>> configuration = FLMRConfig()
>>> # Initializing a model (with random weights) from the FLMR style configuration
>>> model = FLMRModelForRetrieval(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flmr"
def __init__(
self,
vision_config: FLMRVisionConfig = None,
text_config: FLMRTextConfig = None,
mask_punctuation: bool = True,
mapping_network_prefix_length: int = 32,
dim: int = 128,
use_vision_encoder: bool = True,
initializer_range: float = 0.02,
separate_query_and_context_text_encoder: bool = False,
separate_query_and_context_vision_encoder: bool = False,
query_concat_output_from_vision_encoder: bool = True,
query_concat_output_from_text_encoder: bool = True,
context_concat_output_from_vision_encoder: bool = False,
context_concat_output_from_text_encoder: bool = True,
use_transformer_mapping_network: bool = False,
transformer_mapping_config_base: str = None,
transformer_mapping_num_hidden_layers: int = None,
load_cpu_extension: bool = False,
mask_instruction_token: str = None,
transformer_mapping_cross_attention_length: int = 32,
vision_model_version: str = "openai/clip-vit-base-patch32",
**kwargs,
):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {}
if text_config is None:
text_config = {}
if not isinstance(vision_config, FLMRVisionConfig):
vision_config = FLMRVisionConfig(**vision_config)
if not isinstance(text_config, FLMRTextConfig):
text_config = FLMRTextConfig(**text_config)
self.vision_config = vision_config
self.text_config = text_config
self.dim = dim
self.initializer_range = initializer_range
self.mask_punctuation = mask_punctuation
self.mapping_network_prefix_length = mapping_network_prefix_length
self.use_vision_encoder = use_vision_encoder
self.separate_query_and_context_text_encoder = separate_query_and_context_text_encoder
self.separate_query_and_context_vision_encoder = separate_query_and_context_vision_encoder
self.query_concat_output_from_vision_encoder = query_concat_output_from_vision_encoder
self.query_concat_output_from_text_encoder = query_concat_output_from_text_encoder
self.context_concat_output_from_vision_encoder = context_concat_output_from_vision_encoder
self.context_concat_output_from_text_encoder = context_concat_output_from_text_encoder
self.use_transformer_mapping_network = use_transformer_mapping_network
self.transformer_mapping_config_base = transformer_mapping_config_base
self.transformer_mapping_num_hidden_layers = transformer_mapping_num_hidden_layers
self.load_cpu_extension = load_cpu_extension
self.mask_instruction_token = mask_instruction_token
self.transformer_mapping_cross_attention_length = transformer_mapping_cross_attention_length
self.vision_model_version = vision_model_version
@classmethod
def from_text_vision_configs(cls, text_config: FLMRTextConfig, vision_config: FLMRVisionConfig, **kwargs):
r"""
Instantiate a [`FLMRConfig`] (or a derived class) from FLMR text model configuration and FLMR vision model
configuration.
Returns:
[`FLMRConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config, vision_config=vision_config, **kwargs)
|