File size: 8,511 Bytes
3704bcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FLMR."""
from typing import List, Optional, Union
from transformers.utils import TensorType, logging
from transformers.models.bert.tokenization_bert import BertTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer_config.json"}
CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"LinWeizheDragon/PreFLMR_ViT-L": (
"https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/context_tokenizer/vocab.txt"
),
"LinWeizheDragon/FLMR": (
"https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/context_tokenizer/vocab.txt"
),
},
"tokenizer_file": {
"LinWeizheDragon/PreFLMR_ViT-L": (
"https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/context_tokenizer/tokenizer_config.json"
),
"LinWeizheDragon/FLMR": (
"https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/context_tokenizer/tokenizer_config.json"
),
},
}
QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"LinWeizheDragon/PreFLMR_ViT-L": (
"https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/query_tokenizer/vocab.txt"
),
"LinWeizheDragon/FLMR": ("https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/query_tokenizer/vocab.txt"),
},
"tokenizer_file": {
"LinWeizheDragon/PreFLMR_ViT-L": (
"https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/query_tokenizer/tokenizer_config.json"
),
"LinWeizheDragon/FLMR": (
"https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/query_tokenizer/tokenizer_config.json"
),
},
}
CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"LinWeizheDragon/PreFLMR_ViT-L": 512,
"LinWeizheDragon/FLMR": 512,
}
QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"LinWeizheDragon/PreFLMR_ViT-L": 512,
"LinWeizheDragon/FLMR": 512,
}
CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION = {
"LinWeizheDragon/PreFLMR_ViT-L": {"do_lower_case": True},
"LinWeizheDragon/FLMR": {"do_lower_case": True},
}
QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION = {
"LinWeizheDragon/PreFLMR_ViT-L": {"do_lower_case": True},
"LinWeizheDragon/FLMR": {"do_lower_case": True},
}
# Modified from colbert.modeling.tokenization
class FLMRContextEncoderTokenizer(BertTokenizer):
r"""
Construct a FLMRContextEncoder tokenizer.
[`FLMRContextEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
def __init__(
self,
doc_maxlen: Optional[int] = 512,
**kwargs,
):
super().__init__(
doc_maxlen=doc_maxlen,
**kwargs,
)
self.doc_maxlen = doc_maxlen
self.D_marker_token, self.D_marker_token_id = "[D]", self.convert_tokens_to_ids("[unused1]")
def __call__(
self,
text: List[str],
padding: Optional[Union[str, bool]] = "max_length",
truncation: Optional[Union[bool, str]] = "longest_first",
max_length: Optional[int] = 512,
return_tensors: Optional[Union[str, TensorType]] = "pt",
**kwargs,
):
# add placehold for the [D] marker
text = [". " + x for x in text]
if max_length > self.doc_maxlen:
# can not exceed the pre-set length
max_length = self.doc_maxlen
encoding = super().__call__(
text,
padding=padding,
truncation=truncation,
return_tensors=return_tensors,
max_length=max_length,
**kwargs,
)
ids, mask = encoding["input_ids"], encoding["attention_mask"]
# postprocess for the [D] marker
ids[:, 1] = self.D_marker_token_id
# if bsize:
# # This bsize function is used in the original ColBERT codebase to split inputs into multiple batches
# if image_features is not None:
# ids, mask, image_features, reverse_indices = _sort_by_length(ids, mask, bsize, image_features=image_features)
# batches = _split_into_batches(ids, mask, bsize, image_features=image_features)
# else:
# ids, mask, reverse_indices = _sort_by_length(ids, mask, bsize)
# batches = _split_into_batches(ids, mask, bsize)
# return batches, reverse_indices
encoding["input_ids"] = ids
encoding["attention_mask"] = mask
return encoding
# Modified from colbert.modeling.tokenization
class FLMRQueryEncoderTokenizer(BertTokenizer):
r"""
Constructs a FLMRQueryEncoder tokenizer.
[`FLMRQueryEncoder`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
def __init__(
self,
*args,
query_maxlen: Optional[int] = 32,
attend_to_mask_tokens: Optional[bool] = False,
**kwargs,
):
super().__init__(
*args,
query_maxlen=query_maxlen,
attend_to_mask_tokens=attend_to_mask_tokens,
**kwargs,
)
self.query_maxlen = query_maxlen
self.background_maxlen = 512 - self.query_maxlen + 1 # FIXME: Make this configurable
self.attend_to_mask_tokens = attend_to_mask_tokens
self.Q_marker_token, self.Q_marker_token_id = "[Q]", self.convert_tokens_to_ids("[unused0]")
def __call__(
self,
text: Union[str, List[str]],
padding: Optional[Union[str, bool]] = "max_length",
truncation: Optional[Union[bool, str]] = True,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = "pt",
**kwargs,
):
if isinstance(text, str):
# convert to list if input is a single string
text = [text]
# add placehold for the [Q] marker
text = [". " + x for x in text]
if max_length is not None:
# use user specified max_length
pass
else:
# use default max length
max_length = self.query_maxlen
encoding = super().__call__(
text,
padding=padding,
truncation=truncation,
return_tensors=return_tensors,
max_length=max_length,
**kwargs,
)
ids, mask = encoding["input_ids"], encoding["attention_mask"]
# postprocess for the [Q] marker and the [MASK] augmentation
ids[:, 1] = self.Q_marker_token_id
ids[ids == self.pad_token_id] = self.mask_token_id
if self.attend_to_mask_tokens:
# When attend_to_mask_tokens is True, we want to attend to the [MASK] tokens
mask[ids == self.mask_token_id] = 1
assert mask.sum().item() == mask.size(0) * mask.size(1), mask
return {"input_ids": ids, "attention_mask": mask}
|