Lifan-Z's picture
End of training
0f1b7f3 verified
|
raw
history blame
2.95 kB
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-v2-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.84

hubert-base-ls960-v2-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7772
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2028 1.0 90 2.1088 0.42
1.7214 2.0 180 1.6669 0.43
1.6141 3.0 270 1.5335 0.54
0.9971 4.0 360 1.1589 0.64
1.0174 5.0 450 0.9587 0.64
0.7295 6.0 540 0.8286 0.69
0.8034 7.0 630 0.8001 0.76
0.5709 8.0 720 0.9846 0.73
0.4724 9.0 810 0.6829 0.79
0.5161 10.0 900 0.9728 0.72
0.4247 11.0 990 0.7745 0.78
0.2696 12.0 1080 0.5330 0.87
0.1403 13.0 1170 0.7202 0.83
0.3434 14.0 1260 0.8506 0.82
0.2754 15.0 1350 0.6707 0.85
0.152 16.0 1440 0.8752 0.83
0.233 17.0 1530 0.5098 0.9
0.1169 18.0 1620 0.7069 0.86
0.1667 19.0 1710 0.7760 0.84
0.0691 20.0 1800 0.7772 0.84

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1