File size: 30,738 Bytes
ebf5d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
"""
Dataset for clip model
"""
import logging
import torch
from torch.utils.data import Dataset
import numpy as np
import h5py
import math
import random
from utils.basic_utils import load_jsonl, load_json, l2_normalize_np_array
from utils.tensor_utils import pad_sequences_1d
from baselines.clip_alignment_with_language.local_utils.proposal import get_proposal_interface
from baselines.clip_alignment_with_language.local_utils.compute_proposal_upper_bound import \
get_didemo_agreed_ts
from standalone_eval.eval import compute_temporal_iou_batch
logger = logging.getLogger(__name__)
class ProposalRetrievalDataset(Dataset):
"""
Args:
dset_name, str, ["tvr"]
ctx_mode: str,
pos_iou_thd: float, in [0, 1], >= pos_iou_thd are defined as positive
neg_iou_thd: float, in [0, 1], < neg_iou_thd are defined as negative
Return:
a dict: {
"meta": {
"desc_id": int,
"desc": str,
"vid_name": str,
"duration": float,
"ts": [st (float), ed (float)], seconds, ground_truth timestamps
"pos_moment": [st (float), ed (float)], seconds, IoU with "ts" >= pos_iou_thd
"intra_neg_moment": [st (float), ed (float)], seconds, IoU with "ts" < neg_iou_thd
"inter_neg_vid_name": str,
"inter_neg_duration": float,
"inter_neg_moment": [st (float), ed (float)], seconds, IoU with "ts" < neg_iou_thd
}
"model_inputs": {
"desc_feat": torch.tensor, (L, D_t)
"pos_moment_feat": torch.tensor, (n_clip_in_moment, D)
"intra_neg_moment_feat": torch.tensor, (n_clip_in_moment, D)
"inter_neg_moment_feat": torch.tensor, (n_clip_in_moment, D)
}
}
"""
def __init__(self, dset_name, data_path, desc_bert_path, sub_bert_path, max_desc_len,
vid_feat_path, clip_length, vid_feat_size, sub_feat_size=0, ctx_mode="video_tef",
pos_iou_thd=0.7, neg_iou_thd=0.3, h5driver=None, data_ratio=1.0,
normalize_vfeat=True, normalize_tfeat=True, model_type="cal",
external_train_vr_res_path=None, corpus_path=None):
self.dset_name = dset_name
self.model_type = model_type
self.pool_local = model_type == "mcn" # pool local feature
self.data_path = data_path
self.data_ratio = data_ratio
self.desc_bert_path = desc_bert_path
self.max_desc_len = max_desc_len
self.sub_bert_path = sub_bert_path
self.vid_feat_path = vid_feat_path
self.clip_length = clip_length
self.ctx_mode = ctx_mode
self.pos_iou_thd = pos_iou_thd
self.neg_iou_thd = neg_iou_thd
self.vid_feat_output_size = 2 * vid_feat_size * ("video" in ctx_mode) + 2 * ("tef" in ctx_mode)
self.sub_feat_output_size = 2 * sub_feat_size * ("sub" in ctx_mode) + 2 * ("tef" in ctx_mode)
# prepare desc data
self.data = load_jsonl(data_path)
if self.data_ratio != 1:
n_examples = int(len(self.data) * data_ratio)
self.data = self.data[:n_examples]
logger.info("Using {}% of the data: {} examples".format(data_ratio * 100, n_examples))
self.proposal_fn = get_proposal_interface(dset_name)
if self.ctx_mode != "tef":
self.vid_feat_h5 = h5py.File(self.vid_feat_path, "r", driver=h5driver)
self.desc_bert_h5 = h5py.File(self.desc_bert_path, "r", driver=h5driver)
if "sub" in self.ctx_mode:
self.sub_bert_h5 = h5py.File(self.sub_bert_path, "r", driver=h5driver)
self.normalize_vfeat = normalize_vfeat
self.normalize_tfeat = normalize_tfeat
self.use_video = "video" in self.ctx_mode
self.use_sub = "sub" in self.ctx_mode
self.use_tef = "tef" in self.ctx_mode
if external_train_vr_res_path is not None:
video_data = load_json(corpus_path)["train"]
# {video_idx: [vid_name, vid_duration]}
video_idx2name_dur_pair = {v[1]: [k, v[0]] for k, v in video_data.items()}
external_vr_res = load_json(external_train_vr_res_path)
# {desc_id: [(vid_name, vid_duration), ...]}
self.desc_id2video_names_dur_pairs = \
{e["desc_id"]: [video_idx2name_dur_pair[int(sub_e[0])] for sub_e in e["predictions"]]
for e in external_vr_res["VR"]} # ordered
def __len__(self):
return len(self.data)
def __getitem__(self, index):
raw_data = self.data[index]
# initialize with basic data
meta = dict(
desc_id=raw_data["desc_id"],
desc=raw_data["desc"],
vid_name=raw_data["vid_name"],
duration=raw_data["duration"],
ts=raw_data["ts"] if self.dset_name != "didemo" else get_didemo_agreed_ts(raw_data["ts"]),
)
model_inputs = dict()
query_feat = self.desc_bert_h5[str(raw_data["desc_id"])][:self.max_desc_len]
if self.normalize_tfeat:
query_feat = l2_normalize_np_array(query_feat)
model_inputs["query_feat"] = torch.from_numpy(query_feat)
# sample positive and negative moments
meta["pos_moment"] = self.align_ts_to_clip_boundaries(meta["duration"], meta["ts"])
meta["intra_neg_moment"] = self.sample_intra_neg_moment(meta["duration"], meta["ts"])
meta["inter_neg_moment"], meta["inter_neg_vid_name"], meta["inter_neg_duration"] = \
self.sample_inter_video_negative(meta["vid_name"], meta["pos_moment"] / meta["duration"],
desc_id=meta["desc_id"])
pos_tef, intra_neg_tef, inter_neg_tef = (None,) * 3
if self.use_tef:
pos_tef = meta["pos_moment"] / meta["duration"] # temporal endpoint feature, (2, )
intra_neg_tef = meta["intra_neg_moment"] / meta["duration"]
inter_neg_tef = meta["inter_neg_moment"] / meta["inter_neg_duration"]
if self.use_video:
pos_v_feat = self.vid_feat_h5[meta["vid_name"]] # (N_frm, D)
neg_v_feat = self.vid_feat_h5[meta["inter_neg_vid_name"]]
pos_v_ctx_feat = np.mean(pos_v_feat, axis=0)
neg_v_ctx_feat = np.mean(neg_v_feat, axis=0)
if self.normalize_vfeat:
pos_v_ctx_feat = l2_normalize_np_array(pos_v_ctx_feat)
neg_v_ctx_feat = l2_normalize_np_array(neg_v_ctx_feat)
pos_moment_v_feat = self.get_moment_feat(pos_v_feat, meta["pos_moment"],
normalize=self.normalize_vfeat,
fix_outbound=True, pool_local=self.pool_local)
intra_neg_moment_v_feat = self.get_moment_feat(pos_v_feat, meta["intra_neg_moment"],
normalize=self.normalize_vfeat,
fix_outbound=True, pool_local=self.pool_local)
inter_neg_moment_v_feat = self.get_moment_feat(neg_v_feat, meta["inter_neg_moment"],
normalize=self.normalize_vfeat,
fix_outbound=True, pool_local=self.pool_local)
# concat features, [video_clip_feat; video_context_feat; temporal_endpoint_feat]
model_inputs["pos_moment_video_feat"] = self.concat_feat_adv(
moment_feats=[pos_moment_v_feat, pos_v_ctx_feat], tef=pos_tef, ctx_mode=self.ctx_mode)
model_inputs["intra_neg_moment_video_feat"] = self.concat_feat_adv(
moment_feats=[intra_neg_moment_v_feat, pos_v_ctx_feat], tef=intra_neg_tef, ctx_mode=self.ctx_mode)
model_inputs["inter_neg_moment_video_feat"] = self.concat_feat_adv(
moment_feats=[inter_neg_moment_v_feat, neg_v_ctx_feat], tef=inter_neg_tef, ctx_mode=self.ctx_mode)
else:
for k in ["pos_moment_video_feat", "intra_neg_moment_video_feat", "inter_neg_moment_video_feat"]:
model_inputs[k] = torch.zeros((2, 2))
if self.use_sub: # no need for ctx feature, as the features are already contextulized
pos_s_feat = self.sub_bert_h5[meta["vid_name"]] # (N_words, D_t)
neg_s_feat = self.sub_bert_h5[meta["inter_neg_vid_name"]]
pos_s_ctx_feat = np.mean(pos_s_feat, axis=0)
neg_s_ctx_feat = np.mean(neg_s_feat, axis=0)
if self.normalize_tfeat:
pos_s_ctx_feat = l2_normalize_np_array(pos_s_ctx_feat)
neg_s_ctx_feat = l2_normalize_np_array(neg_s_ctx_feat)
pos_moment_s_feat = self.get_moment_feat(pos_s_feat, meta["pos_moment"],
normalize=self.normalize_tfeat,
fix_outbound=True, pool_local=self.pool_local)
intra_neg_moment_s_feat = self.get_moment_feat(pos_s_feat, meta["intra_neg_moment"],
normalize=self.normalize_tfeat,
fix_outbound=True, pool_local=self.pool_local)
inter_neg_moment_s_feat = self.get_moment_feat(neg_s_feat, meta["inter_neg_moment"],
normalize=self.normalize_tfeat,
fix_outbound=True, pool_local=self.pool_local)
# concat features, [sub_clip_feat; sub_context_feat; temporal_endpoint_feat]
model_inputs["pos_moment_sub_feat"] = self.concat_feat_adv(
moment_feats=[pos_moment_s_feat, pos_s_ctx_feat], tef=pos_tef, ctx_mode=self.ctx_mode)
model_inputs["intra_neg_moment_sub_feat"] = self.concat_feat_adv(
moment_feats=[intra_neg_moment_s_feat, pos_s_ctx_feat], tef=intra_neg_tef, ctx_mode=self.ctx_mode)
model_inputs["inter_neg_moment_sub_feat"] = self.concat_feat_adv(
moment_feats=[inter_neg_moment_s_feat, neg_s_ctx_feat], tef=inter_neg_tef, ctx_mode=self.ctx_mode)
else:
for k in ["pos_moment_sub_feat", "intra_neg_moment_sub_feat", "inter_neg_moment_sub_feat"]:
model_inputs[k] = torch.zeros((2, 2))
if not self.use_sub and not self.use_video and self.use_tef: # use video stream
model_inputs["pos_moment_video_feat"] = \
self.concat_feat_adv(tef=pos_tef, ctx_mode=self.ctx_mode)
model_inputs["intra_neg_moment_video_feat"] = \
self.concat_feat_adv(tef=intra_neg_tef, ctx_mode=self.ctx_mode)
model_inputs["inter_neg_moment_video_feat"] = \
self.concat_feat_adv(tef=inter_neg_tef, ctx_mode=self.ctx_mode)
return dict(meta=meta, model_inputs=model_inputs)
def align_ts_to_clip_boundaries(self, duration, ts):
""" # TODO Do we really need this???
Generate a moment [st, ed] that is most close to a clip boundary,
st and ed must be a multiple of self.clip_length, and ed <= duration
duration: float,
ts: [st (float), ed (float)], ground_truth ts
"""
clip_aligned_ts = np.array([math.floor(ts[0] / self.clip_length),
math.ceil(ts[1] / self.clip_length)]) * self.clip_length
clip_aligned_ts[1] = min(clip_aligned_ts[1], duration)
return clip_aligned_ts
def sample_intra_neg_moment(self, duration, ts):
""" Generate a intra negative moment given the video duration and the GT ts.
The returned moment will be aligned to clip boundaries.
1) neg_moment has at least 2 clips
2) its iou with ts should be < self.neg_iou_thd
Args:
duration: float
ts: [st (float), ed (float)], ground_truth ts
Returns:
"""
max_n_search = 5 # search at most max_n_search times, so the program will not be stuck in infinite loops.
sampled_moments = self.sample_ts_at_clip_boundaries(duration, n_pairs=max_n_search) # (n_pairs, 2)
sampled_moments_ious = compute_temporal_iou_batch(sampled_moments, ts) # (n_pairs, )
smallest_iou_idx = np.argmin(sampled_moments_ious)
sampled_moment = sampled_moments[smallest_iou_idx]
# only a small number (<20 with max_n_search==10) of samples are wrong,
# usually when the video_duration is too short.
# if sampled_moments_ious[smallest_iou_idx] >= self.neg_iou_thd:
# logger.warning("the sampled intra-neg might be wrong. "
# "v_dur {}, ts {}, sampled neg moment {}, iou {}"
# .format(duration, ts, sampled_moment, sampled_moments_ious[smallest_iou_idx]))
return sampled_moment
def sample_ts_at_clip_boundaries(self, duration, n_pairs=1):
"""sample n_pairs moment at clip boundaries, each has at least two clips."""
# '+ self.clip_length' since we assume indexing using [clip_st_idx, clip_ed_idx),
moments = np.random.randint(0, np.ceil(duration / self.clip_length), size=(n_pairs, 2))
moments = np.sort(moments, axis=1) * self.clip_length
less_equal = moments[:, 1] - moments[:, 0] <= self.clip_length
start_zero = moments[:, 0] == 0
moments[:, 1][less_equal * start_zero] += self.clip_length
moments[:, 0][less_equal * (start_zero == False)] -= self.clip_length # keep as bool!!!
return moments
def sample_inter_video_negative(self, pos_vid_name, normalized_pos_moment, desc_id=None):
"""Sample a negative moment --> negative video + similar normalized moment.
1) they are not from the same video
Args:
pos_vid_name: str,
normalized_pos_moment: np.ndarray, (2, ), value in [0, 1], normalized by duration.
desc_id: str
Returns:
moment: np.ndarray, (2, ), ts aligned to clip boundaries.
"""
use_guided_negative = hasattr(self, "desc_id2video_names_dur_pairs")
if use_guided_negative:
top_videos = self.desc_id2video_names_dur_pairs[desc_id]
max_idx = len(top_videos) - 1
while True: # usually only run once.
if use_guided_negative:
sampled_idx = min(max_idx, int(random.expovariate(0.1)))
sampled_video_name, sampled_video_dur = top_videos[sampled_idx]
else:
neg_vid_data = self.data[int(random.random() * len(self))]
sampled_video_name, sampled_video_dur = neg_vid_data["vid_name"], neg_vid_data["duration"]
if sampled_video_name != pos_vid_name:
inter_neg_moment = self.align_ts_to_clip_boundaries(
sampled_video_dur, sampled_video_dur * normalized_pos_moment)
break
return inter_neg_moment, sampled_video_name, sampled_video_dur
@classmethod
def get_clip_indices_from_moments(cls, moment, clip_length):
clip_st_ed_indices = moment / clip_length
return math.floor(clip_st_ed_indices[0]), math.ceil(clip_st_ed_indices[1])
def get_moment_feat(self, vid_feat, moment, normalize=True, fix_outbound=False, pool_local=False):
"""Each moment contains multiple clips.
Inside means [moment[0], moment[1]] (seconds)
Args:
vid_feat: np.ndarray, (N_clips, D)
moment: [st (float), ed (float)], np.ndarray
normalize: L2 normalize features
fix_outbound: bool,
pool_local: whether to mean pool the features
Returns:
moment_feature: np.ndarray, ((moment[1] - moment[0]) / clip_length, D) or (D, )
"""
clip_st_idx, clip_ed_idx = self.get_clip_indices_from_moments(moment, self.clip_length)
if fix_outbound:
vid_feat_len = len(vid_feat)
if clip_st_idx >= vid_feat_len:
clip_st_idx = vid_feat_len - 2
moment_feat = vid_feat[clip_st_idx:clip_ed_idx] # indexed as [st, ed)
if pool_local:
moment_feat = np.mean(moment_feat, axis=0, keepdims=True)
if normalize:
moment_feat = l2_normalize_np_array(moment_feat)
return moment_feat # (n_clip_in_moment, D) or (D, )
@classmethod
def concat_feat_adv(cls, moment_feats=None, tef=None, to_torch=True, ctx_mode="tef"):
""" Concat moment_feat with other_feats and tef. All the features should be L2 normalized before concatenating
Args:
moment_feats: list of feats, one of them might be None. Other possible values are
ctx_feat (D, ) or sub(vid)_moment_feat (N_p, N_clips, D_t) or (N_clips, D_t).
The first non-None feature array is used as base for the rest to concatenate with.
tef: (N_p, 2) or (2, ), np.ndarray
to_torch: convert resulting np.ndarray to torch.tensor
ctx_mode:
"""
if ctx_mode == "tef":
assembled_feat = np.expand_dims(tef, axis=-2)
else: # concat moment_feat with all other_feats
moment_feats = [e for e in moment_feats if e is not None] # remove possible None (placeholder)
extra_dims = moment_feats[0].shape[:-1] # all others will need to broadcast to match it.
if isinstance(extra_dims, int): # happens when len(moment_feat.shape) == 2
extra_dims = (extra_dims, )
last_dim_lengths = [0, ] + [e.shape[-1] for e in moment_feats]
if "tef" in ctx_mode: # add tef
last_dim_lengths += [2, ]
moment_feats += [np.expand_dims(tef, axis=-2), ]
if len(moment_feats) > 1:
assembled_feat = np.empty(extra_dims + (sum(last_dim_lengths), ), dtype=np.float32)
last_dim_lengths_cumsum = [sum(last_dim_lengths[0:idx+1]) for idx in range(len(last_dim_lengths))]
for idx, feat in enumerate(moment_feats):
assembled_feat[..., last_dim_lengths_cumsum[idx]:last_dim_lengths_cumsum[idx+1]] = feat
else:
assembled_feat = moment_feats[0]
if to_torch:
return torch.from_numpy(assembled_feat)
else:
return assembled_feat # (N_prop, N_clips, D_concat) or (N_clips, D_concat)
class ProposalRetrievalEvalDataset(Dataset):
"""
init_data_mode: `video_query` or `video_only` or `query_only`,
it indicates which data to load when initialize the Dataset object.
data_mode: `context` or `query`, it indicates which data to return for self.__get_item__()
desc_bert_path_or_handler: h5py.File object or str path
vid_feat_path_or_handler: h5py.File object or str path
eval_proposal_bsz: the proposals for a single video will be sorted in length and batched here with
max batch size to be eval_proposal_bsz. A single video might have multiple batches of proposals.
load_gt_video: load GroundTruth Video, useful when evaluating single video moment retrieval.
data_ratio: percentage of query data to use.
"""
def __init__(self, dset_name, eval_split_name, data_path=None,
desc_bert_path_or_handler=None, max_desc_len=None,
sub_bert_path_or_handler=None, vid_feat_path_or_handler=None,
corpus_path=None, clip_length=None,
eval_proposal_bsz=None, ctx_mode="tef", data_mode="context",
h5driver=None, data_ratio=1.0, normalize_vfeat=True,
normalize_tfeat=True, max_n_proposals=90, model_type="cal"):
self.dset_name = dset_name
self.model_type = model_type
self.pool_local = model_type == "mcn" # pool local feature
self.eval_split_name = eval_split_name
self.ctx_mode = ctx_mode
self.load_gt_video = False
self.data_ratio = data_ratio # only affect query data
self.normalize_vfeat = normalize_vfeat
self.normalize_tfeat = normalize_tfeat
self.max_n_proposals = max_n_proposals
self.data_mode = None
self.set_data_mode(data_mode)
self.max_desc_len = max_desc_len
self.data_path = data_path
self.query_data = load_jsonl(data_path)
if data_ratio != 1:
n_examples = int(len(self.query_data) * data_ratio)
self.query_data = self.query_data[:n_examples]
logger.info("Using {}% of the data: {} examples".format(data_ratio * 100, n_examples))
if isinstance(desc_bert_path_or_handler, h5py.File):
self.desc_bert_h5 = desc_bert_path_or_handler
else:
self.desc_bert_h5 = h5py.File(desc_bert_path_or_handler, "r", driver=h5driver)
video_data = load_json(corpus_path)[self.eval_split_name]
self.video_data = [{"vid_name": k, "duration": v[0]} for k, v in video_data.items()]
self.video2idx = {k: v[1] for k, v in video_data.items()}
self.eval_proposal_bsz = eval_proposal_bsz
self.clip_length = clip_length
self.proposal_fn = get_proposal_interface(dset_name)
self.use_video = "video" in self.ctx_mode
self.use_sub = "sub" in self.ctx_mode
self.use_tef = "tef" in self.ctx_mode
if self.use_video:
if isinstance(vid_feat_path_or_handler, h5py.File):
self.vid_feat_h5 = vid_feat_path_or_handler
else: # str path
self.vid_feat_h5 = h5py.File(vid_feat_path_or_handler, "r", driver=h5driver)
if self.use_sub:
if isinstance(sub_bert_path_or_handler, h5py.File):
self.sub_bert_h5 = sub_bert_path_or_handler
else: # str path
self.sub_bert_h5 = h5py.File(sub_bert_path_or_handler, "r", driver=h5driver)
def set_data_mode(self, data_mode):
"""context or query"""
assert data_mode in ["context", "query"]
self.data_mode = data_mode
def load_gt_vid_name_for_query(self, load_gt_video):
"""load_gt_video: bool, affect the returned value of self._get_item_query"""
assert "vid_name" in self.query_data[0]
self.load_gt_video = load_gt_video
def __len__(self):
if self.data_mode == "context":
return len(self.video_data)
else:
return len(self.query_data)
def __getitem__(self, index):
if self.data_mode == "context":
return self._get_item_context(index)
else:
return self._get_item_query(index)
def _get_item_query(self, index):
"""Need to batch"""
raw_data = self.query_data[index]
meta = dict(
desc_id=raw_data["desc_id"],
desc=raw_data["desc"],
vid_name=raw_data["vid_name"] if self.load_gt_video else None
)
model_inputs = dict()
query_feat = self.desc_bert_h5[str(raw_data["desc_id"])][:self.max_desc_len]
if self.normalize_tfeat:
query_feat = l2_normalize_np_array(query_feat)
model_inputs["query_feat"] = torch.from_numpy(query_feat)
return dict(meta=meta, model_inputs=model_inputs)
def _get_item_context(self, index):
"""No need to batch, since it has already been batched here"""
raw_data = self.video_data[index]
# get proposals and sort in ascending order, to get more efficient batching
proposals = self.proposal_fn(
video_id="", metadata={"duration": raw_data["duration"]}) # np.ndarray (N_p, 2)
proposals_lengths = proposals[:, 1] - proposals[:, 0] # seconds
sorted_proposal_indices = np.argsort(proposals_lengths)[:self.max_n_proposals]
sorted_proposals = proposals[sorted_proposal_indices]
# initialize with basic data
meta = dict(
vid_name=raw_data["vid_name"],
duration=raw_data["duration"],
proposals=sorted_proposals
)
model_inputs = dict()
n_proposal_batches = math.ceil(1.0 * len(sorted_proposals) / self.eval_proposal_bsz)
tef_batched_list = [None, ] * n_proposal_batches
t_moments_mask_list = [None, ] * n_proposal_batches
if self.use_tef:
tef_array = sorted_proposals / meta["duration"] # (N_p, 2)
for batch_idx in range(n_proposal_batches):
st_m_idx = batch_idx * self.eval_proposal_bsz
ed_m_idx = (batch_idx + 1) * self.eval_proposal_bsz
tef_batched_list[batch_idx] = tef_array[st_m_idx:ed_m_idx]
t_moments_mask_list[batch_idx] = \
np.ones((len(tef_batched_list[batch_idx]), 1), dtype=np.float32)
if not self.use_video and not self.use_sub: # use video stream
model_inputs["video_moment_features_list"] = [
ProposalRetrievalDataset.concat_feat_adv(tef=t, ctx_mode=self.ctx_mode) for t in tef_batched_list]
model_inputs["video_moment_mask_list"] = [torch.from_numpy(e) for e in t_moments_mask_list]
# extract/group/pad
if self.use_video:
v_feat = self.vid_feat_h5[meta["vid_name"]] # (N_frm, D)
v_ctx_feat = np.mean(v_feat, axis=0) # (D, )
if self.normalize_vfeat:
v_ctx_feat = l2_normalize_np_array(v_ctx_feat)
v_padded_moments_features_list, v_moments_mask_list = \
self.get_batched_moment_feat_for_all_proposals(v_feat, sorted_proposals,
pool_local=self.pool_local,
normalize=self.normalize_vfeat)
model_inputs["video_moment_features_list"] = [ProposalRetrievalDataset.concat_feat_adv(
moment_feats=[v, v_ctx_feat], tef=t, ctx_mode=self.ctx_mode)
for v, t in zip(v_padded_moments_features_list, tef_batched_list)]
model_inputs["video_moment_mask_list"] = [torch.from_numpy(e) for e in v_moments_mask_list]
if self.use_sub:
s_feat = self.sub_bert_h5[meta["vid_name"]] # (N_frm, D)
s_ctx_feat = np.mean(s_feat, axis=0) # (D, )
if self.normalize_tfeat:
s_ctx_feat = l2_normalize_np_array(s_ctx_feat)
s_padded_moments_features_list, s_moments_mask_list = \
self.get_batched_moment_feat_for_all_proposals(s_feat, sorted_proposals,
pool_local=self.pool_local,
normalize=self.normalize_tfeat)
model_inputs["sub_moment_features_list"] = [ProposalRetrievalDataset.concat_feat_adv(
moment_feats=[s, s_ctx_feat], tef=t, ctx_mode=self.ctx_mode)
for s, t in zip(s_padded_moments_features_list, tef_batched_list)]
model_inputs["sub_moment_mask_list"] = [torch.from_numpy(e) for e in s_moments_mask_list]
return dict(meta=meta, model_inputs=model_inputs)
def get_batched_moment_feat_for_all_proposals(self, feature, moments, pool_local=False, normalize=True):
"""proposals of the same video wil be segmented into multiple batches to accomodate GPU memory
pool_local: pool local feature into a single vector
"""
n_proposal_batches = math.ceil(1.0 * len(moments) / self.eval_proposal_bsz)
padded_moments_features_list = [None, ] * n_proposal_batches
moments_mask_list = [None, ] * n_proposal_batches
moments_features = self.get_moment_feat_for_all_proposals(
feature, moments, normalize=normalize, pool_local=pool_local) # N_p * [(N_clips, D), ]
for batch_idx in range(n_proposal_batches):
st_m_idx = batch_idx * self.eval_proposal_bsz
ed_m_idx = (batch_idx + 1) * self.eval_proposal_bsz
padded_moments_features, moments_mask = \
pad_sequences_1d(moments_features[st_m_idx:ed_m_idx], dtype=np.float32)
padded_moments_features_list[batch_idx] = padded_moments_features
moments_mask_list[batch_idx] = moments_mask
assert np.sum(np.sum(moments_mask, axis=1) == 0) == 0, " err {}".format(moments_mask)
assert np.sum(np.sum(moments_mask_list[0], axis=1) == 0) == 0, " err {}".format(moments_mask_list)
return padded_moments_features_list, moments_mask_list
def get_moment_feat_for_all_proposals(self, vid_feat, moments, normalize=True, pool_local=False):
"""Each moment is comprised of multiple clips
Args:
vid_feat: np.ndarray, (N_clips, D)
moments: np.ndarray, (N_p, 2), each row is [st (float), ed (float)],
normalize: L2 normalize
pool_local:
Returns:
moments_features: list(np.ndarray), [(N_clips, D), ] * N_p, N_clips is changing.
"""
if normalize and not pool_local:
vid_feat = l2_normalize_np_array(vid_feat)
vid_feat_len = len(vid_feat)
moments_st_clip_indices = np.floor(moments[:, 0] / self.clip_length).astype(np.int64).clip(0, vid_feat_len-1)
moments_ed_clip_indices = np.ceil(moments[:, 1] / self.clip_length).astype(np.int64).clip(1, vid_feat_len)
moments_features = []
for st_idx, ed_idx, m in zip(moments_st_clip_indices, moments_ed_clip_indices, moments):
feat = vid_feat[st_idx:ed_idx]
if pool_local:
feat = np.mean(feat, axis=0, keepdims=True)
if normalize:
feat = l2_normalize_np_array(feat)
moments_features.append(feat)
return moments_features
def proposal_retrieval_collate(batch):
batch_meta = [e["meta"] for e in batch] # seems no need to collate ?
model_inputs_keys = batch[0]["model_inputs"].keys()
batched_data = {k: pad_sequences_1d([e["model_inputs"][k] for e in batch], dtype=torch.float32)
for k in model_inputs_keys}
return batch_meta, batched_data
def prepare_batch_inputs(batched_model_inputs, device, non_blocking=False):
model_inputs = {}
for k, v in batched_model_inputs.items():
model_inputs[k] = v[0].to(device, non_blocking=non_blocking)
model_inputs[k.replace("feat", "mask")] = v[1].to(device, non_blocking=non_blocking)
return model_inputs
if __name__ == '__main__':
from baselines.clip_alignment_with_language.config import BaseOptions
options = BaseOptions().parse()
|