File size: 34,880 Bytes
ebf5d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
import os
import time
import math
import pprint
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict, OrderedDict
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from baselines.clip_alignment_with_language.config import TestOptions
from baselines.clip_alignment_with_language.model import CALWithSub
from baselines.clip_alignment_with_language.proposal_retrieval_dataset import \
proposal_retrieval_collate, ProposalRetrievalEvalDataset, prepare_batch_inputs
from utils.basic_utils import save_jsonl, save_json, load_json
from utils.temporal_nms import temporal_non_maximum_suppression
from utils.tensor_utils import pad_sequences_1d
from standalone_eval.eval import eval_retrieval
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def combine_single_video_proposal_embeddings(proposals_embedding_list, proposals_mask_list):
"""
Args:
proposals_embedding_list: list(torch.Tensor), bsz * (N_prop, N_clips, D_o)
proposals_mask_list: list(torch.Tensor), bsz * (N_prop, N_clips)
"""
if len(proposals_embedding_list) == 1:
return proposals_embedding_list[0], proposals_mask_list[0]
else: # > 1
max_n_clips = max([e.shape[1] for e in proposals_embedding_list])
n_proposals = sum([len(e) for e in proposals_embedding_list])
d = proposals_embedding_list[0].shape[2]
proposals_embedding = proposals_embedding_list[0].new_zeros((n_proposals, max_n_clips, d))
proposals_mask = proposals_mask_list[0].new_zeros((n_proposals, max_n_clips))
mask_lengths = [0, ] + [len(m) for m in proposals_mask_list]
mask_cumsum_lengths = np.cumsum(mask_lengths)
for idx, (e, m) in enumerate(zip(proposals_embedding_list, proposals_mask_list)):
proposals_embedding[mask_cumsum_lengths[idx]:mask_cumsum_lengths[idx + 1], :e.shape[1]] = e
proposals_mask[mask_cumsum_lengths[idx]:mask_cumsum_lengths[idx + 1], :m.shape[1]] = m
return proposals_embedding, proposals_mask
def compute_query_embeddings(model, eval_dataset, opt, load_gt_vid_name):
"""Use val set to do evaluation, remember to run with torch.no_grad().
estimated size 20,000 (query) * 100 (hsz) * 4 / (1024**2) = 7.63 MB
"""
model.eval()
eval_dataset.set_data_mode("query")
eval_dataset.load_gt_vid_name_for_query(load_gt_vid_name)
query_eval_loader = DataLoader(eval_dataset,
collate_fn=proposal_retrieval_collate,
batch_size=opt.eval_query_bsz,
num_workers=opt.num_workers,
shuffle=False,
pin_memory=opt.pin_memory)
global_meta_list = [] # list(dicts)
# n_query = min(len(eval_dataset), opt.eval_query_bsz) if opt.debug else len(eval_dataset)
n_query = len(eval_dataset)
global_query_embedding = torch.empty((n_query,
model.config.output_size),
dtype=torch.float32, device=opt.device) # (N_q, D_o)
for idx, batch in tqdm(enumerate(query_eval_loader),
desc="Computing q embedding",
total=len(query_eval_loader)):
global_meta_list.extend(batch[0])
model_inputs = prepare_batch_inputs(batch[1], device=opt.device, non_blocking=opt.pin_memory)
global_query_embedding[idx * opt.eval_query_bsz: (idx + 1) * opt.eval_query_bsz] = \
model.query_encoder(**model_inputs)
if opt.debug:
break
return global_meta_list, global_query_embedding
def compute_proposal_embeddings(model, eval_dataset, opt):
"""Use val set to do evaluation, remember to run with torch.no_grad().
estimated 1000 (videos) * 300 (proposals) * 20 (clips) * 100 (hsz) * 4 / (1024 ** 3) = 2.24 GB
"""
model.eval()
eval_dataset.set_data_mode("context")
global_meta_list = [] # list(dicts)
global_proposal_video_embedding_list = [] # list(torch.tensor), N_videos * [N_prop, N_clips, D_o]
global_proposal_sub_embedding_list = [] # list(torch.tensor), N_videos * [N_prop, N_clips, D_o]
global_proposal_video_mask_list = [] # list(torch.tensor), N_videos * [N_prop, N_clips]
global_proposal_sub_mask_list = [] # list(torch.tensor), N_videos * [N_prop, N_clips]
for idx, single_video_info in tqdm(enumerate(eval_dataset),
desc="Computing prop embedding for videos",
total=len(eval_dataset)):
global_meta_list.append(single_video_info["meta"])
if model.use_video or model.tef_only:
proposals_features_list = single_video_info["model_inputs"]["video_moment_features_list"]
proposals_mask_list = single_video_info["model_inputs"]["video_moment_mask_list"]
proposals_mask_list = [e.to(opt.device, non_blocking=opt.pin_memory) for e in proposals_mask_list]
proposals_embedding_list = [] # (N_prop, D_o)
for feat in proposals_features_list:
proposals_embedding_list.append(
model.moment_encoder(feat.to(opt.device, non_blocking=opt.pin_memory), module_name="video"))
p, m = combine_single_video_proposal_embeddings(proposals_embedding_list, proposals_mask_list)
global_proposal_video_embedding_list.append(p)
global_proposal_video_mask_list.append(m)
else:
global_proposal_video_embedding_list.append(None)
if model.use_sub:
proposals_features_list = single_video_info["model_inputs"]["sub_moment_features_list"]
proposals_mask_list = single_video_info["model_inputs"]["sub_moment_mask_list"]
proposals_mask_list = [e.to(opt.device, non_blocking=opt.pin_memory) for e in proposals_mask_list]
proposals_embedding_list = [] # (N_prop, D_o)
for feat in proposals_features_list:
proposals_embedding_list.append(
model.moment_encoder(feat.to(opt.device, non_blocking=opt.pin_memory), module_name="sub"))
p, m = combine_single_video_proposal_embeddings(proposals_embedding_list, proposals_mask_list)
global_proposal_sub_embedding_list.append(p)
global_proposal_sub_mask_list.append(m)
else:
global_proposal_sub_embedding_list.append(None)
if opt.debug and idx == 100:
break
global_proposal_mask_list = global_proposal_sub_mask_list if model.use_sub else global_proposal_video_mask_list
return global_meta_list, global_proposal_video_embedding_list, \
global_proposal_sub_embedding_list, global_proposal_mask_list
def compute_query_proposal_distance(model, eval_dataset, opt, tasks=("SVMR",)):
"""compute and save query and video proposal embeddings,
tasks: SVMR (single video moment retrieval), VCMR (video corpus moment retrieval)
"""
is_svmr = "SVMR" in tasks
is_vcmr = "VCMR" in tasks
query_meta_list, query_embed = compute_query_embeddings(model, eval_dataset, opt,
load_gt_vid_name=is_svmr)
video_meta_list, video_prop_embed_list, sub_prop_embed_list, prop_mask_list = \
compute_proposal_embeddings(model, eval_dataset, opt)
eval_res = dict(
query_meta=query_meta_list, # N_q * dict()
video_meta=video_meta_list, # N_videos * dict()
video2idx=eval_dataset.video2idx, # dict {vid_name: index}
query_prop_dist_vcmr=[], # N_videos * (N_q, N_prop), note N_prop is changing for each video.
query_prop_dist_svmr=[], # N_q * (N_prop, ), each query has a GT video, no need to calc. for all.
)
if is_vcmr:
for v_prop_embed, s_prop_embed, prop_mask in tqdm(
zip(video_prop_embed_list, sub_prop_embed_list, prop_mask_list),
desc="Computing VCMR q to prop dist for videos",
total=len(video_prop_embed_list)):
query_prop_dist = model.compute_cdist_inference(
query_embed, v_prop_embed, s_prop_embed, prop_mask) # (N_q, N_prop)
eval_res["query_prop_dist_vcmr"].append(query_prop_dist.cpu())
if opt.debug:
break
if is_svmr:
if opt.debug:
debug_query_meta = []
# this is different from video2idx
svmr_video2meta_idx = {e["vid_name"]: idx for idx, e in enumerate(video_meta_list)}
# logger.info("svmr_video2idx {}".format(list(svmr_video2idx.keys())[:3]))
for single_q_embed, single_q_meta in tqdm(zip(query_embed, query_meta_list),
desc="Computing SVMR q to prop dist for videos",
total=len(query_embed)):
# logger.info("single_q_meta[vid_name] {}".format(single_q_meta["vid_name"]))
if opt.debug:
if single_q_meta["vid_name"] not in svmr_video2meta_idx:
continue
debug_query_meta.append(single_q_meta)
q_gt_vid_meta_idx = svmr_video2meta_idx[single_q_meta["vid_name"]]
v_prop_embed = video_prop_embed_list[q_gt_vid_meta_idx] # [N_prop, N_clips, D_o]
s_prop_embed = sub_prop_embed_list[q_gt_vid_meta_idx] # [N_prop, N_clips, D_o]
prop_mask = prop_mask_list[q_gt_vid_meta_idx] # [N_prop, N_clips]
query_prop_dist = model.compute_cdist_inference(
single_q_embed.unsqueeze(0), v_prop_embed, s_prop_embed, prop_mask) # (1, N_prop)
eval_res["query_prop_dist_svmr"].append(query_prop_dist.squeeze(0).cpu().numpy())
if opt.debug:
eval_res["query_meta"] = debug_query_meta
return eval_res
def filter_vcmr_by_nms(all_video_predictions, nms_threshold=0.6,
max_before_nms=1000, max_after_nms=100, score_col_idx=3):
""" Apply non-maximum suppression for all the predictions for each video.
1) group predictions by video index
2) apply nms individually for each video index group
3) combine and sort the predictions
Args:
all_video_predictions: list(sublist),
Each sublist is [video_idx (int), st (float), ed(float), score (float)]
Note the scores are negative distances.
nms_threshold: float
max_before_nms: int
max_after_nms: int
score_col_idx: int
Returns:
"""
predictions_neg_by_video_group = defaultdict(list)
for pred in all_video_predictions[:max_before_nms]:
predictions_neg_by_video_group[pred[0]].append(pred[1:]) # [st (float), ed(float), score (float)]
predictions_by_video_group_neg_after_nms = dict()
for video_idx, grouped_preds in predictions_neg_by_video_group.items():
predictions_by_video_group_neg_after_nms[video_idx] = \
temporal_non_maximum_suppression(grouped_preds, nms_threshold=nms_threshold)
predictions_after_nms = []
for video_idx, grouped_preds in predictions_by_video_group_neg_after_nms.items():
for pred in grouped_preds:
pred = [video_idx] + pred # [video_idx (int), st (float), ed(float), score (float)]
predictions_after_nms.append(pred)
# ranking happens across videos
predictions_after_nms = sorted(predictions_after_nms,
key=lambda x: x[score_col_idx],
reverse=True)[:max_after_nms] # descending order
return predictions_after_nms
def post_processing_vcmr_nms(vcmr_res, nms_thd=0.6, max_before_nms=1000, max_after_nms=100):
"""
vcmr_res: list(dict), each dict is{
"desc": str,
"desc_id": int,
"predictions": list(sublist) # each sublist is
[video_idx (int), st (float), ed(float), score (float)], video_idx could be different
}
"""
processed_vcmr_res = []
for e in vcmr_res:
e["predictions"] = filter_vcmr_by_nms(e["predictions"],
nms_threshold=nms_thd,
max_before_nms=max_before_nms,
max_after_nms=max_after_nms)
processed_vcmr_res.append(e)
return processed_vcmr_res
def post_processing_svmr_nms(svmr_res, nms_thd=0.6, max_before_nms=1000, max_after_nms=100):
"""
svmr_res: list(dict), each dict is
{"desc": str,
"desc_id": int,
"predictions": list(sublist) # each sublist is
[video_idx (int), st (float), ed(float), score (float)], video_idx is the same.
}
"""
processed_svmr_res = []
for e in svmr_res:
# the predictions are sorted inside the nms func.
_predictions = [d[1:] for d in e["predictions"][:max_before_nms]]
_predictions = temporal_non_maximum_suppression(
_predictions, nms_threshold=nms_thd)[:max_after_nms]
_video_id = e["predictions"][0][0] # video_id is the same for all predictions
e["predictions"] = [[_video_id, ] + d for d in _predictions]
processed_svmr_res.append(e)
return processed_svmr_res
def generate_vcmr_predictions_from_res_with_external(eval_res, max_prop_per_query=300, query_bsz_in_sort=1000):
""" This function is for Video Corpus Moment Retrieval (VCMR).
Generate prediction file which could be evaluated using standalone_eval.eval.
Args:
eval_res: dict(
query_meta=query_meta_list, # N_q * dict(), each dict is {"desc_id": int, "desc": str}
video_meta=video_meta_list, # N_videos * dict(), {"vid_name": str, "duration": float, "proposals": ndarray}
video2idx=eval_dataset.video2idx, # dict {vid_name: index}
video_bsz_in_sort=[], # N_videos * (N_q, N_prop)
)
max_prop_per_query: int or None. If None, generate ranking for all possible moments, else generate top {}.
query_bsz_in_sort: int, only sort a subset of queries at a time, it will be too large to sort all queries.
return:
list(dicts): each dict is dict(desc=str, desc_id=int, predictions=list(sublist)),
each sublist is [vid_name (str), st (float), ed (float), score (float)], score is negative distance.
"""
# video2idx
video2idx = eval_res["video2idx"]
video_meta = eval_res["video_meta"]
query_meta = eval_res["query_meta"]
video_idx2meta_idx = {video2idx[m["vid_name"]]: i for i, m in enumerate(video_meta)}
external_query2video = eval_res["external_query2video"] if "external_query2video" in eval_res else None
# 「query idx: [video meta idx]」
external_query2video_meta_idx = {k: [video_idx2meta_idx[e] for e in v] for k, v in external_query2video.items()}
external_ordered_video_meta_indices = torch.LongTensor(
[external_query2video_meta_idx[e["desc_id"]] for e in query_meta]) # (Nq, 5)
top_n_retrieved = external_ordered_video_meta_indices.shape[1]
# (N_videos, N_prop, N_q), (N_videos, N_prop)
padded_dist, padded_mask = pad_sequences_1d([e.transpose(0, 1) for e in eval_res["query_prop_dist_vcmr"]],
dtype=eval_res["query_prop_dist_vcmr"][0].dtype,
device=eval_res["query_prop_dist_vcmr"][0].device)
# putting 'NaN' into the invalid bits, torch.sort considers 'NaN' as larger than any number!!!
padded_dist += (padded_mask.unsqueeze(2) == 0).float() * 1e10
n_videos, n_prop, n_q = padded_dist.shape
padded_dist = padded_dist.permute(2, 0, 1) # (N_q, N_videos, N_prop)
# get only top retrieved, N_videos now decreased to top_n_retrieved
row_indices = torch.arange(n_q, device=padded_dist.device)
padded_dist = torch.stack([
padded_dist[row_indices, external_ordered_video_meta_indices[:, col_idx]]
for col_idx in range(top_n_retrieved)], dim=1) # (N_q, 5, N_prop)
n_videos = top_n_retrieved
padded_dist = padded_dist.view(n_q, -1).contiguous() # (N_q, N_video*N_prop)
print("n_videos, n_prop, n_q {}".format((n_videos, n_prop, n_q)))
print("padded_dist, {}".format(padded_dist.shape))
sorted_distances, sorted_indices = torch.topk(padded_dist.to(torch.device("cuda:0"), non_blocking=True),
k=min(max_prop_per_query, n_videos * n_prop),
dim=1, largest=False, sorted=True) # (N_q, max_prop_per_query) * 2
print("orted_distances {}, sorted_indices {}".format(sorted_distances.shape, sorted_indices.shape))
sorted_distances = - sorted_distances.cpu().numpy()
# (N_q, max_prop_per_query) * 2, prop_indices: inside video indices.
video_meta_indices_retrieved = torch.floor(sorted_indices.float() / n_prop).long().cpu().numpy()
# map back to original video idx (not video meta idx, but real video idx)
video_indices = np.array([[external_query2video[query_meta[i]["desc_id"]][j] for j in r]
for i, r in enumerate(video_meta_indices_retrieved)]) # (N_q, max_prop_per_query)
prop_indices = torch.remainder(sorted_indices, n_prop).cpu().numpy() # (N_q, max_prop_per_query)
print("video_indices {}, prop_indices {}".format(video_indices.shape, prop_indices.shape))
vr_res = []
for i in trange(n_q, desc="[VR] Loop over queries to generate predictions"):
row = video_indices[i]
score_row = - sorted_distances[i]
cur_vr_redictions = []
for j, video_idx in enumerate(row):
cur_vr_redictions.append([int(video_idx), 0, 0, float(score_row[j])])
cur_query_pred = dict(
desc_id=query_meta[i]["desc_id"],
desc=query_meta[i]["desc"],
predictions=cur_vr_redictions
)
vr_res.append(cur_query_pred)
vcmr_res = []
logger.debug("sorted_indices {}".format(sorted_indices.shape))
logger.debug("sorted_distances {}".format(sorted_distances.shape))
out_bounds_cnt = 0
for idx, (v_row_indices, p_row_indices) in tqdm(enumerate(zip(video_indices, prop_indices)),
desc="[VCMR] Loop over queries to generate predictions",
total=n_q): # query
sorted_distances_row = - sorted_distances[idx] # converted to negative distance
# [video_idx(int), st(float), ed(float), score(float)]
cur_ranked_predictions = []
for col_idx, (v_col_idx, p_col_idx) in enumerate(zip(v_row_indices, p_row_indices)):
cur_proposals = eval_res["video_meta"][video_idx2meta_idx[v_col_idx]]["proposals"]
cur_pred = []
cur_pred += [int(v_col_idx), ]
# what is wrong with the indexing below??? (out of bounds), but results seems fine???
# Not a bug. Since there might be less than max_before_nms proposals from the top retrieved videos
if p_col_idx >= len(cur_proposals):
out_bounds_cnt += 1
p_col_idx = len(cur_proposals)-1
cur_pred += cur_proposals[p_col_idx].tolist()
cur_pred += [float(sorted_distances_row[col_idx])]
cur_ranked_predictions.append(cur_pred)
cur_query_pred = dict(
desc_id=eval_res["query_meta"][idx]["desc_id"],
desc=eval_res["query_meta"][idx]["desc"],
predictions=cur_ranked_predictions
)
vcmr_res.append(cur_query_pred)
logger.info("[DEBUG] out_bounds_cnt {}".format(out_bounds_cnt))
return vcmr_res, vr_res
def generate_vcmr_predictions_from_res(eval_res, max_prop_per_query=300, query_bsz_in_sort=1000):
""" This function is for Video Corpus Moment Retrieval (VCMR).
Generate prediction file which could be evaluated using standalone_eval.eval.
Args:
eval_res: dict(
query_meta=query_meta_list, # N_q * dict(), each dict is {"desc_id": int, "desc": str}
video_meta=video_meta_list, # N_videos * dict(), {"vid_name": str, "duration": float, "proposals": ndarray}
video2idx=eval_dataset.video2idx, # dict {vid_name: index}
video_bsz_in_sort=[], # N_videos * (N_q, N_prop)
)
max_prop_per_query: int or None. If None, generate ranking for all possible moments, else generate top {}.
query_bsz_in_sort: int, only sort a subset of queries at a time, it will be too large to sort all queries.
return:
list(dicts): each dict is dict(desc=str, desc_id=int, predictions=list(sublist)),
each sublist is [vid_name (str), st (float), ed (float), score (float)], score is negative distance.
"""
# video2idx
video2idx = eval_res["video2idx"]
# (N_videos, N_prop, N_q), (N_videos, N_prop)
padded_dist, padded_mask = pad_sequences_1d([e.transpose(0, 1) for e in eval_res["query_prop_dist_vcmr"]],
dtype=eval_res["query_prop_dist_vcmr"][0].dtype,
device=eval_res["query_prop_dist_vcmr"][0].device)
# putting 'NaN' into the invalid bits, torch.sort considers 'NaN' as larger than any number!!!
padded_dist += (padded_mask.unsqueeze(2) == 0).float() * 1e10
n_videos, n_prop, n_q = padded_dist.shape
print("n_videos, n_prop, n_q {}".format((n_videos, n_prop, n_q)))
padded_dist = padded_dist.view(n_videos * n_prop, n_q).transpose(0, 1).contiguous() # (N_q, N_video*N_prop)
print("padded_dist, {}".format(padded_dist.shape))
sorted_distances, sorted_indices = torch.topk(padded_dist.to(torch.device("cuda:0"), non_blocking=True),
k=min(max_prop_per_query, n_videos * n_prop),
dim=1, largest=False, sorted=True) # (N_q, max_prop_per_query) * 2
sorted_distances = - sorted_distances.cpu().numpy()
# (N_q, max_prop_per_query) * 2, prop_indices: inside video indices.
video_meta_indices = torch.floor(sorted_indices.float() / n_prop).long().cpu().numpy()
prop_indices = torch.remainder(sorted_indices, n_prop).cpu().numpy()
vr_res = []
query_meta = eval_res["query_meta"]
for i in trange(n_q, desc="[VR] Loop over queries to generate predictions"):
row = video_meta_indices[i]
score_row = - sorted_distances[i]
cur_vr_redictions = []
for j, meta_idx in enumerate(row):
video_idx = video2idx[eval_res["video_meta"][meta_idx]["vid_name"]]
cur_vr_redictions.append([video_idx, 0, 0, float(score_row[j])])
cur_query_pred = dict(
desc_id=query_meta[i]["desc_id"],
desc=query_meta[i]["desc"],
predictions=cur_vr_redictions
)
vr_res.append(cur_query_pred)
vcmr_res = []
logger.debug("sorted_indices {}".format(sorted_indices.shape))
logger.debug("sorted_distances {}".format(sorted_distances.shape))
for idx, (vm_row_indices, p_row_indices) in tqdm(enumerate(zip(video_meta_indices, prop_indices)),
desc="[VCMR] Loop over queries to generate predictions",
total=n_q): # query
sorted_distances_row = - sorted_distances[idx] # converted to negative distance
# [video_idx(int), st(float), ed(float), score(float)]
cur_ranked_predictions = []
for col_idx, (v_col_idx, p_col_idx) in enumerate(zip(vm_row_indices, p_row_indices)):
cur_pred = []
cur_pred += [video2idx[eval_res["video_meta"][v_col_idx]["vid_name"]], ]
cur_pred += eval_res["video_meta"][v_col_idx]["proposals"][p_col_idx].tolist()
cur_pred += [float(sorted_distances_row[col_idx])]
cur_ranked_predictions.append(cur_pred)
cur_query_pred = dict(
desc_id=eval_res["query_meta"][idx]["desc_id"],
desc=eval_res["query_meta"][idx]["desc"],
predictions=cur_ranked_predictions
)
vcmr_res.append(cur_query_pred)
return vcmr_res, vr_res
def generate_svmr_predictions_from_res(eval_res, max_prop_per_query=None):
""" This function is for Video Corpus Moment Retrieval (VCMR).
Generate prediction file which could be evaluated using standalone_eval.eval.
Args:
eval_res: dict(
query_meta=query_meta_list, # N_q * dict(), each dict is {"desc_id": int, "desc": str}
video_meta=video_meta_list, # N_videos * dict(), {"vid_name": str, "duration": float, "proposals": ndarray}
video2idx=eval_dataset.video2idx, # dict {vid_name: index}
query_prop_dist_svmr=[], # N_q * (N_prop, )
)
max_prop_per_query: not used
return:
list(dicts): each dict is dict(desc=str, desc_id=int, predictions=list(sublist)),
each sublist is [vid_name (str), st (float), ed (float), score (float)], score is negative distance.
"""
video2idx = eval_res["video2idx"]
svmr_res = []
svmr_video2meta_idx = {e["vid_name"]: idx for idx, e in enumerate(eval_res["video_meta"])}
for idx, (q_p_dist, q_m) in tqdm(enumerate(zip(eval_res["query_prop_dist_svmr"], eval_res["query_meta"])),
desc="Loop over queries to generate predictions",
total=len(eval_res["query_prop_dist_svmr"])): # query
sorted_indices = np.argsort(q_p_dist) # (N_prop, ) # ascending order, distance
if max_prop_per_query is not None:
sorted_indices = sorted_indices[:max_prop_per_query]
v_eval_idx = video2idx[q_m["vid_name"]]
v_meta_idx = svmr_video2meta_idx[q_m["vid_name"]]
proposals = eval_res["video_meta"][v_meta_idx]["proposals"] # (N_p, 2)
# [video_idx(int), st(float), ed(float), score(float)]
cur_ranked_predictions = [
[v_eval_idx, ] + proposals[sort_idx].tolist() + [- round(float(q_p_dist[sort_idx]), 4), ]
for sort_idx in sorted_indices]
cur_query_pred = dict(
desc_id=q_m["desc_id"],
desc=q_m["desc"],
predictions=cur_ranked_predictions
)
svmr_res.append(cur_query_pred)
return svmr_res
POST_PROCESSING_MMS_FUNC = {
"SVMR": post_processing_svmr_nms,
"VCMR": post_processing_vcmr_nms
}
def get_submission_top_n(submission, top_n=100):
def get_prediction_top_n(list_dict_predictions, top_n):
top_n_res = []
for e in list_dict_predictions:
e["predictions"] = e["predictions"][:top_n]
top_n_res.append(e)
return top_n_res
top_n_submission = dict(video2idx=submission["video2idx"], )
for k in submission:
if k != "video2idx":
top_n_submission[k] = get_prediction_top_n(submission[k], top_n)
return top_n_submission
def load_external_vr_res(external_vr_res_path, top_n_vr_videos=5):
"""return a mapping from desc_id to top retrieved video id"""
external_vr_res = load_json(external_vr_res_path)
external_vr_res = get_submission_top_n(external_vr_res, top_n=top_n_vr_videos)["VR"]
query2video = {e["desc_id"]: [sub_e[0] for sub_e in e["predictions"]] for e in external_vr_res}
return query2video
def eval_epoch(model, eval_dataset, opt, save_submission_filename,
tasks=("SVMR",), max_before_nms=1000, max_after_nms=100):
model.eval()
logger.info("Computing scores")
logger.info("Start timing")
# times = [] # do not use
# for _ in range(3):
# st_time = time.time()
if opt.use_intermediate:
intermediate_cache_path = os.path.join(opt.results_dir, "{}_eval_res.pt".format(opt.eval_split_name))
if not os.path.exists(intermediate_cache_path):
logger.info("Saving intermediate results {}.".format(intermediate_cache_path))
eval_res = compute_query_proposal_distance(model, eval_dataset, opt, tasks=tasks)
torch.save(eval_res, intermediate_cache_path)
else:
logger.info("Loading intermediate results {}.".format(intermediate_cache_path))
eval_res = torch.load(intermediate_cache_path)
else:
logger.info("Running without saving intermediate results, you might want to turn on --use_intermediate.")
eval_res = compute_query_proposal_distance(model, eval_dataset, opt, tasks=tasks)
# del model # We dont need model anymore
# eval_res = compute_query_proposal_distance(model, eval_dataset, opt, tasks=tasks)
logger.info("Generating predictions from scores")
eval_submission_raw = dict(video2idx=eval_res["video2idx"])
if "SVMR" in tasks:
eval_submission_raw["SVMR"] = generate_svmr_predictions_from_res(
eval_res, max_prop_per_query=max_before_nms)
# vcmr_loading_time = 0
if "VCMR" in tasks:
if opt.external_inference_vr_res_path is not None:
logger.info("Using external VR results from {}".format(opt.external_inference_vr_res_path))
# vcmr_loading_time = time.time()
eval_res["external_query2video"] = load_external_vr_res(
opt.external_inference_vr_res_path, top_n_vr_videos=5)
# vcmr_loading_time = time.time() - vcmr_loading_time
vcmr_res, vr_res = generate_vcmr_predictions_from_res_with_external(
eval_res, max_prop_per_query=max_before_nms)
else:
vcmr_res, vr_res = generate_vcmr_predictions_from_res(
eval_res, max_prop_per_query=max_before_nms)
eval_submission_raw["VCMR"] = vcmr_res
eval_submission_raw["VR"] = vr_res
# times += [time.time() - st_time - vcmr_loading_time]
# times = torch.FloatTensor(times)
IOU_THDS = (0.5, 0.7)
logger.info("Saving/Evaluating before nms results")
submission_path = os.path.join(opt.results_dir, save_submission_filename)
eval_submission = get_submission_top_n(eval_submission_raw, top_n=max_after_nms)
if max_after_nms < 1000:
save_json(eval_submission, submission_path)
else:
torch.save(eval_submission, submission_path.replace(".json", ".pt"))
metrics = eval_retrieval(eval_submission, eval_dataset.query_data,
iou_thds=IOU_THDS, match_number=not opt.debug, verbose=opt.debug,
use_desc_type=opt.dset_name == "tvr")
# metrics["time_avg"] = float(times.mean())
# metrics["time_std"] = float(times.std())
save_metrics_path = submission_path.replace(".json", "_metrics.json")
save_json(metrics, save_metrics_path, save_pretty=True, sort_keys=False)
latest_file_paths = [submission_path, save_metrics_path]
if opt.nms_thd != -1:
logger.info("Performing nms with nms_thd {}".format(opt.nms_thd))
eval_submission_after_nms = dict(video2idx=eval_submission_raw["video2idx"])
for k, nms_func in POST_PROCESSING_MMS_FUNC.items():
if k in eval_submission_raw:
eval_submission_after_nms[k] = nms_func(eval_submission_raw[k],
nms_thd=opt.nms_thd,
max_before_nms=max_before_nms,
max_after_nms=max_after_nms)
logger.info("Saving/Evaluating nms results")
submission_nms_path = submission_path.replace(".json", "_nms_thd_{}.json".format(opt.nms_thd))
save_json(eval_submission_after_nms, submission_nms_path)
metrics_nms = eval_retrieval(eval_submission_after_nms, eval_dataset.query_data,
iou_thds=IOU_THDS, match_number=not opt.debug, verbose=opt.debug)
save_metrics_nms_path = submission_nms_path.replace(".json", "_metrics.json")
save_json(metrics_nms, save_metrics_nms_path, save_pretty=True, sort_keys=False)
latest_file_paths += [submission_nms_path, save_metrics_nms_path]
else:
metrics_nms = None
return metrics, metrics_nms, latest_file_paths
def setup_model(opt):
"""Load model from checkpoint and move to specified device"""
checkpoint = torch.load(opt.ckpt_filepath)
model = CALWithSub(checkpoint["model_cfg"])
model.load_state_dict(checkpoint["model"])
logger.info("Loaded model saved at epoch {} from checkpoint: {}"
.format(checkpoint["epoch"], opt.ckpt_filepath))
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
if len(opt.device_ids) > 1:
logger.info("Use multi GPU", opt.device_ids)
model = torch.nn.DataParallel(model, device_ids=opt.device_ids) # use multi GPU
return model
def start_inference():
logger.info("Setup config, data and model...")
opt = TestOptions().parse()
cudnn.benchmark = False
cudnn.deterministic = True
assert opt.eval_path is not None
eval_dataset = ProposalRetrievalEvalDataset(
dset_name=opt.dset_name,
model_type=opt.model_type,
eval_split_name=opt.eval_split_name, # should only be val set
data_path=opt.eval_path,
desc_bert_path_or_handler=opt.desc_bert_path,
sub_bert_path_or_handler=opt.sub_bert_path,
max_desc_len=opt.max_desc_l,
corpus_path=opt.corpus_path,
vid_feat_path_or_handler=opt.vid_feat_path,
clip_length=opt.clip_length,
eval_proposal_bsz=opt.eval_proposal_bsz,
ctx_mode=opt.ctx_mode,
data_mode="query",
h5driver=opt.h5driver,
data_ratio=opt.data_ratio,
normalize_vfeat=not opt.no_norm_vfeat,
normalize_tfeat=not opt.no_norm_tfeat,
)
model = setup_model(opt)
save_submission_filename = \
"inference_{}_{}_{}_predictions_{}.json".format(
opt.dset_name, opt.eval_split_name, opt.eval_id, "_".join(opt.tasks))
logger.info("Starting inference...")
with torch.no_grad():
metrics_no_nms, metrics_nms, latest_file_paths = \
eval_epoch(model, eval_dataset, opt, save_submission_filename, tasks=opt.tasks,
max_before_nms=opt.max_before_nms, max_after_nms=opt.max_after_nms)
logger.info("metrics_no_nms \n{}".format(pprint.pformat(metrics_no_nms, indent=4)))
logger.info("metrics_nms \n{}".format(pprint.pformat(metrics_nms, indent=4)))
if __name__ == '__main__':
start_inference()
|