File size: 15,262 Bytes
0ce1ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
from __future__ import print_function, unicode_literals, absolute_import, division
import numpy as np
import warnings
import os
import datetime
from tqdm import tqdm
from collections import defaultdict
from zipfile import ZipFile, ZIP_DEFLATED
from scipy.ndimage.morphology import distance_transform_edt, binary_fill_holes
from scipy.ndimage.measurements import find_objects
from scipy.optimize import minimize_scalar
from skimage.measure import regionprops
from csbdeep.utils import _raise
from csbdeep.utils.six import Path
from collections.abc import Iterable
from .matching import matching_dataset, _check_label_array
try:
from edt import edt
_edt_available = True
try: _edt_parallel_max = len(os.sched_getaffinity(0))
except: _edt_parallel_max = 128
_edt_parallel_default = 4
_edt_parallel = os.environ.get('STARDIST_EDT_NUM_THREADS', _edt_parallel_default)
try:
_edt_parallel = min(_edt_parallel_max, int(_edt_parallel))
except ValueError as e:
warnings.warn(f"Invalid value ({_edt_parallel}) for STARDIST_EDT_NUM_THREADS. Using default value ({_edt_parallel_default}) instead.")
_edt_parallel = _edt_parallel_default
del _edt_parallel_default, _edt_parallel_max
except ImportError:
_edt_available = False
# warnings.warn("Could not find package edt... \nConsider installing it with \n pip install edt\nto improve training data generation performance.")
pass
def gputools_available():
try:
import gputools
except:
return False
return True
def path_absolute(path_relative):
""" Get absolute path to resource"""
base_path = os.path.abspath(os.path.dirname(__file__))
return os.path.join(base_path, path_relative)
def _is_power_of_2(i):
assert i > 0
e = np.log2(i)
return e == int(e)
def _normalize_grid(grid,n):
try:
grid = tuple(grid)
(len(grid) == n and
all(map(np.isscalar,grid)) and
all(map(_is_power_of_2,grid))) or _raise(TypeError())
return tuple(int(g) for g in grid)
except (TypeError, AssertionError):
raise ValueError("grid = {grid} must be a list/tuple of length {n} with values that are power of 2".format(grid=grid, n=n))
def edt_prob(lbl_img, anisotropy=None):
if _edt_available:
return _edt_prob_edt(lbl_img, anisotropy=anisotropy)
else:
# warnings.warn("Could not find package edt... \nConsider installing it with \n pip install edt\nto improve training data generation performance.")
return _edt_prob_scipy(lbl_img, anisotropy=anisotropy)
def _edt_prob_edt(lbl_img, anisotropy=None):
"""Perform EDT on each labeled object and normalize.
Internally uses https://github.com/seung-lab/euclidean-distance-transform-3d
that can handle multiple labels at once
"""
lbl_img = np.ascontiguousarray(lbl_img)
constant_img = lbl_img.min() == lbl_img.max() and lbl_img.flat[0] > 0
if constant_img:
warnings.warn("EDT of constant label image is ill-defined. (Assuming background around it.)")
# we just need to compute the edt once but then normalize it for each object
prob = edt(lbl_img, anisotropy=anisotropy, black_border=constant_img, parallel=_edt_parallel)
objects = find_objects(lbl_img)
for i,sl in enumerate(objects,1):
# i: object label id, sl: slices of object in lbl_img
if sl is None: continue
_mask = lbl_img[sl]==i
# normalize it
prob[sl][_mask] /= np.max(prob[sl][_mask]+1e-10)
return prob
def _edt_prob_scipy(lbl_img, anisotropy=None):
"""Perform EDT on each labeled object and normalize."""
def grow(sl,interior):
return tuple(slice(s.start-int(w[0]),s.stop+int(w[1])) for s,w in zip(sl,interior))
def shrink(interior):
return tuple(slice(int(w[0]),(-1 if w[1] else None)) for w in interior)
constant_img = lbl_img.min() == lbl_img.max() and lbl_img.flat[0] > 0
if constant_img:
lbl_img = np.pad(lbl_img, ((1,1),)*lbl_img.ndim, mode='constant')
warnings.warn("EDT of constant label image is ill-defined. (Assuming background around it.)")
objects = find_objects(lbl_img)
prob = np.zeros(lbl_img.shape,np.float32)
for i,sl in enumerate(objects,1):
# i: object label id, sl: slices of object in lbl_img
if sl is None: continue
interior = [(s.start>0,s.stop<sz) for s,sz in zip(sl,lbl_img.shape)]
# 1. grow object slice by 1 for all interior object bounding boxes
# 2. perform (correct) EDT for object with label id i
# 3. extract EDT for object of original slice and normalize
# 4. store edt for object only for pixels of given label id i
shrink_slice = shrink(interior)
grown_mask = lbl_img[grow(sl,interior)]==i
mask = grown_mask[shrink_slice]
edt = distance_transform_edt(grown_mask, sampling=anisotropy)[shrink_slice][mask]
prob[sl][mask] = edt/(np.max(edt)+1e-10)
if constant_img:
prob = prob[(slice(1,-1),)*lbl_img.ndim].copy()
return prob
def _fill_label_holes(lbl_img, **kwargs):
lbl_img_filled = np.zeros_like(lbl_img)
for l in (set(np.unique(lbl_img)) - set([0])):
mask = lbl_img==l
mask_filled = binary_fill_holes(mask,**kwargs)
lbl_img_filled[mask_filled] = l
return lbl_img_filled
def fill_label_holes(lbl_img, **kwargs):
"""Fill small holes in label image."""
# TODO: refactor 'fill_label_holes' and 'edt_prob' to share code
def grow(sl,interior):
return tuple(slice(s.start-int(w[0]),s.stop+int(w[1])) for s,w in zip(sl,interior))
def shrink(interior):
return tuple(slice(int(w[0]),(-1 if w[1] else None)) for w in interior)
objects = find_objects(lbl_img)
lbl_img_filled = np.zeros_like(lbl_img)
for i,sl in enumerate(objects,1):
if sl is None: continue
interior = [(s.start>0,s.stop<sz) for s,sz in zip(sl,lbl_img.shape)]
shrink_slice = shrink(interior)
grown_mask = lbl_img[grow(sl,interior)]==i
mask_filled = binary_fill_holes(grown_mask,**kwargs)[shrink_slice]
lbl_img_filled[sl][mask_filled] = i
return lbl_img_filled
def sample_points(n_samples, mask, prob=None, b=2):
"""sample points to draw some of the associated polygons"""
if b is not None and b > 0:
# ignore image boundary, since predictions may not be reliable
mask_b = np.zeros_like(mask)
mask_b[b:-b,b:-b] = True
else:
mask_b = True
points = np.nonzero(mask & mask_b)
if prob is not None:
# weighted sampling via prob
w = prob[points[0],points[1]].astype(np.float64)
w /= np.sum(w)
ind = np.random.choice(len(points[0]), n_samples, replace=True, p=w)
else:
ind = np.random.choice(len(points[0]), n_samples, replace=True)
points = points[0][ind], points[1][ind]
points = np.stack(points,axis=-1)
return points
def calculate_extents(lbl, func=np.median):
""" Aggregate bounding box sizes of objects in label images. """
if (isinstance(lbl,np.ndarray) and lbl.ndim==4) or (not isinstance(lbl,np.ndarray) and isinstance(lbl,Iterable)):
return func(np.stack([calculate_extents(_lbl,func) for _lbl in lbl], axis=0), axis=0)
n = lbl.ndim
n in (2,3) or _raise(ValueError("label image should be 2- or 3-dimensional (or pass a list of these)"))
regs = regionprops(lbl)
if len(regs) == 0:
return np.zeros(n)
else:
extents = np.array([np.array(r.bbox[n:])-np.array(r.bbox[:n]) for r in regs])
return func(extents, axis=0)
def polyroi_bytearray(x,y,pos=None,subpixel=True):
""" Byte array of polygon roi with provided x and y coordinates
See https://github.com/imagej/imagej1/blob/master/ij/io/RoiDecoder.java
"""
import struct
def _int16(x):
return int(x).to_bytes(2, byteorder='big', signed=True)
def _uint16(x):
return int(x).to_bytes(2, byteorder='big', signed=False)
def _int32(x):
return int(x).to_bytes(4, byteorder='big', signed=True)
def _float(x):
return struct.pack(">f", x)
subpixel = bool(subpixel)
# add offset since pixel center is at (0.5,0.5) in ImageJ
x_raw = np.asarray(x).ravel() + 0.5
y_raw = np.asarray(y).ravel() + 0.5
x = np.round(x_raw)
y = np.round(y_raw)
assert len(x) == len(y)
top, left, bottom, right = y.min(), x.min(), y.max(), x.max() # bbox
n_coords = len(x)
bytes_header = 64
bytes_total = bytes_header + n_coords*2*2 + subpixel*n_coords*2*4
B = [0] * bytes_total
B[ 0: 4] = map(ord,'Iout') # magic start
B[ 4: 6] = _int16(227) # version
B[ 6: 8] = _int16(0) # roi type (0 = polygon)
B[ 8:10] = _int16(top) # bbox top
B[10:12] = _int16(left) # bbox left
B[12:14] = _int16(bottom) # bbox bottom
B[14:16] = _int16(right) # bbox right
B[16:18] = _uint16(n_coords) # number of coordinates
if subpixel:
B[50:52] = _int16(128) # subpixel resolution (option flag)
if pos is not None:
B[56:60] = _int32(pos) # position (C, Z, or T)
for i,(_x,_y) in enumerate(zip(x,y)):
xs = bytes_header + 2*i
ys = xs + 2*n_coords
B[xs:xs+2] = _int16(_x - left)
B[ys:ys+2] = _int16(_y - top)
if subpixel:
base1 = bytes_header + n_coords*2*2
base2 = base1 + n_coords*4
for i,(_x,_y) in enumerate(zip(x_raw,y_raw)):
xs = base1 + 4*i
ys = base2 + 4*i
B[xs:xs+4] = _float(_x)
B[ys:ys+4] = _float(_y)
return bytearray(B)
def export_imagej_rois(fname, polygons, set_position=True, subpixel=True, compression=ZIP_DEFLATED):
""" polygons assumed to be a list of arrays with shape (id,2,c) """
if isinstance(polygons,np.ndarray):
polygons = (polygons,)
fname = Path(fname)
if fname.suffix == '.zip':
fname = fname.with_suffix('')
with ZipFile(str(fname)+'.zip', mode='w', compression=compression) as roizip:
for pos,polygroup in enumerate(polygons,start=1):
for i,poly in enumerate(polygroup,start=1):
roi = polyroi_bytearray(poly[1],poly[0], pos=(pos if set_position else None), subpixel=subpixel)
roizip.writestr('{pos:03d}_{i:03d}.roi'.format(pos=pos,i=i), roi)
def optimize_threshold(Y, Yhat, model, nms_thresh, measure='accuracy', iou_threshs=[0.3,0.5,0.7], bracket=None, tol=1e-2, maxiter=20, verbose=1):
""" Tune prob_thresh for provided (fixed) nms_thresh to maximize matching score (for given measure and averaged over iou_threshs). """
np.isscalar(nms_thresh) or _raise(ValueError("nms_thresh must be a scalar"))
iou_threshs = [iou_threshs] if np.isscalar(iou_threshs) else iou_threshs
values = dict()
if bracket is None:
max_prob = max([np.max(prob) for prob, dist in Yhat])
bracket = max_prob/2, max_prob
# print("bracket =", bracket)
with tqdm(total=maxiter, disable=(verbose!=1), desc="NMS threshold = %g" % nms_thresh) as progress:
def fn(thr):
prob_thresh = np.clip(thr, *bracket)
value = values.get(prob_thresh)
if value is None:
Y_instances = [model._instances_from_prediction(y.shape, *prob_dist, prob_thresh=prob_thresh, nms_thresh=nms_thresh)[0] for y,prob_dist in zip(Y,Yhat)]
stats = matching_dataset(Y, Y_instances, thresh=iou_threshs, show_progress=False, parallel=True)
values[prob_thresh] = value = np.mean([s._asdict()[measure] for s in stats])
if verbose > 1:
print("{now} thresh: {prob_thresh:f} {measure}: {value:f}".format(
now = datetime.datetime.now().strftime('%H:%M:%S'),
prob_thresh = prob_thresh,
measure = measure,
value = value,
), flush=True)
else:
progress.update()
progress.set_postfix_str("{prob_thresh:.3f} -> {value:.3f}".format(prob_thresh=prob_thresh, value=value))
progress.refresh()
return -value
opt = minimize_scalar(fn, method='golden', bracket=bracket, tol=tol, options={'maxiter': maxiter})
verbose > 1 and print('\n',opt, flush=True)
return opt.x, -opt.fun
def _invert_dict(d):
""" return v-> [k_1,k_2,k_3....] for k,v in d"""
res = defaultdict(list)
for k,v in d.items():
res[v].append(k)
return res
def mask_to_categorical(y, n_classes, classes, return_cls_dict=False):
"""generates a multi-channel categorical class map
Parameters
----------
y : n-dimensional ndarray
integer label array
n_classes : int
Number of different classes (without background)
classes: dict, integer, or None
the label to class assignment
can be
- dict {label -> class_id}
the value of class_id can be
0 -> background class
1...n_classes -> the respective object class (1 ... n_classes)
None -> ignore object (prob is set to -1 for the pixels of the object, except for background class)
- single integer value or None -> broadcast value to all labels
Returns
-------
probability map of shape y.shape+(n_classes+1,) (first channel is background)
"""
_check_label_array(y, 'y')
if not (np.issubdtype(type(n_classes), np.integer) and n_classes>=1):
raise ValueError(f"n_classes is '{n_classes}' but should be a positive integer")
y_labels = np.unique(y[y>0]).tolist()
# build dict class_id -> labels (inverse of classes)
if np.issubdtype(type(classes), np.integer) or classes is None:
classes = dict((k,classes) for k in y_labels)
elif isinstance(classes, dict):
pass
else:
raise ValueError("classes should be dict, single scalar, or None!")
if not set(y_labels).issubset(set(classes.keys())):
raise ValueError(f"all gt labels should be present in class dict provided \ngt_labels found\n{set(y_labels)}\nclass dict labels provided\n{set(classes.keys())}")
cls_dict = _invert_dict(classes)
# prob map
y_mask = np.zeros(y.shape+(n_classes+1,), np.float32)
for cls, labels in cls_dict.items():
if cls is None:
# prob == -1 will be used in the loss to ignore object
y_mask[np.isin(y, labels)] = -1
elif np.issubdtype(type(cls), np.integer) and 0 <= cls <= n_classes:
y_mask[...,cls] = np.isin(y, labels)
else:
raise ValueError(f"Wrong class id '{cls}' (for n_classes={n_classes})")
# set 0/1 background prob (unaffected by None values for class ids)
y_mask[...,0] = (y==0)
if return_cls_dict:
return y_mask, cls_dict
else:
return y_mask
def _is_floatarray(x):
return isinstance(x.dtype.type(0),np.floating)
def abspath(root, relpath):
from pathlib import Path
root = Path(root)
if root.is_dir():
path = root/relpath
else:
path = root.parent/relpath
return str(path.absolute())
|