File size: 15,262 Bytes
0ce1ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from __future__ import print_function, unicode_literals, absolute_import, division

import numpy as np
import warnings
import os
import datetime
from tqdm import tqdm
from collections import defaultdict
from zipfile import ZipFile, ZIP_DEFLATED
from scipy.ndimage.morphology import distance_transform_edt, binary_fill_holes
from scipy.ndimage.measurements import find_objects
from scipy.optimize import minimize_scalar
from skimage.measure import regionprops
from csbdeep.utils import _raise
from csbdeep.utils.six import Path
from collections.abc import Iterable

from .matching import matching_dataset, _check_label_array


try:
    from edt import edt
    _edt_available = True
    try:    _edt_parallel_max = len(os.sched_getaffinity(0))
    except: _edt_parallel_max = 128
    _edt_parallel_default = 4
    _edt_parallel = os.environ.get('STARDIST_EDT_NUM_THREADS', _edt_parallel_default)
    try:
        _edt_parallel = min(_edt_parallel_max, int(_edt_parallel))
    except ValueError as e:
        warnings.warn(f"Invalid value ({_edt_parallel}) for STARDIST_EDT_NUM_THREADS. Using default value ({_edt_parallel_default}) instead.")
        _edt_parallel = _edt_parallel_default
    del _edt_parallel_default, _edt_parallel_max
except ImportError:
    _edt_available = False
    # warnings.warn("Could not find package edt... \nConsider installing it with \n  pip install edt\nto improve training data generation performance.")
    pass


def gputools_available():
    try:
        import gputools
    except:
        return False
    return True


def path_absolute(path_relative):
    """ Get absolute path to resource"""
    base_path = os.path.abspath(os.path.dirname(__file__))
    return os.path.join(base_path, path_relative)


def _is_power_of_2(i):
    assert i > 0
    e = np.log2(i)
    return e == int(e)


def _normalize_grid(grid,n):
    try:
        grid = tuple(grid)
        (len(grid) == n and
         all(map(np.isscalar,grid)) and
         all(map(_is_power_of_2,grid))) or _raise(TypeError())
        return tuple(int(g) for g in grid)
    except (TypeError, AssertionError):
        raise ValueError("grid = {grid} must be a list/tuple of length {n} with values that are power of 2".format(grid=grid, n=n))


def edt_prob(lbl_img, anisotropy=None):
    if _edt_available:
        return _edt_prob_edt(lbl_img, anisotropy=anisotropy)
    else:
        # warnings.warn("Could not find package edt... \nConsider installing it with \n  pip install edt\nto improve training data generation performance.")
        return _edt_prob_scipy(lbl_img, anisotropy=anisotropy)

def _edt_prob_edt(lbl_img, anisotropy=None):
    """Perform EDT on each labeled object and normalize.
    Internally uses https://github.com/seung-lab/euclidean-distance-transform-3d
    that can handle multiple labels at once
    """
    lbl_img = np.ascontiguousarray(lbl_img)
    constant_img = lbl_img.min() == lbl_img.max() and lbl_img.flat[0] > 0
    if constant_img:
        warnings.warn("EDT of constant label image is ill-defined. (Assuming background around it.)")
    # we just need to compute the edt once but then normalize it for each object
    prob = edt(lbl_img, anisotropy=anisotropy, black_border=constant_img, parallel=_edt_parallel)
    objects = find_objects(lbl_img)
    for i,sl in enumerate(objects,1):
        # i: object label id, sl: slices of object in lbl_img
        if sl is None: continue
        _mask = lbl_img[sl]==i
        # normalize it
        prob[sl][_mask] /= np.max(prob[sl][_mask]+1e-10)
    return prob

def _edt_prob_scipy(lbl_img, anisotropy=None):
    """Perform EDT on each labeled object and normalize."""
    def grow(sl,interior):
        return tuple(slice(s.start-int(w[0]),s.stop+int(w[1])) for s,w in zip(sl,interior))
    def shrink(interior):
        return tuple(slice(int(w[0]),(-1 if w[1] else None)) for w in interior)
    constant_img = lbl_img.min() == lbl_img.max() and lbl_img.flat[0] > 0
    if constant_img:
        lbl_img = np.pad(lbl_img, ((1,1),)*lbl_img.ndim, mode='constant')
        warnings.warn("EDT of constant label image is ill-defined. (Assuming background around it.)")
    objects = find_objects(lbl_img)
    prob = np.zeros(lbl_img.shape,np.float32)
    for i,sl in enumerate(objects,1):
        # i: object label id, sl: slices of object in lbl_img
        if sl is None: continue
        interior = [(s.start>0,s.stop<sz) for s,sz in zip(sl,lbl_img.shape)]
        # 1. grow object slice by 1 for all interior object bounding boxes
        # 2. perform (correct) EDT for object with label id i
        # 3. extract EDT for object of original slice and normalize
        # 4. store edt for object only for pixels of given label id i
        shrink_slice = shrink(interior)
        grown_mask = lbl_img[grow(sl,interior)]==i
        mask = grown_mask[shrink_slice]
        edt = distance_transform_edt(grown_mask, sampling=anisotropy)[shrink_slice][mask]
        prob[sl][mask] = edt/(np.max(edt)+1e-10)
    if constant_img:
        prob = prob[(slice(1,-1),)*lbl_img.ndim].copy()
    return prob


def _fill_label_holes(lbl_img, **kwargs):
    lbl_img_filled = np.zeros_like(lbl_img)
    for l in (set(np.unique(lbl_img)) - set([0])):
        mask = lbl_img==l
        mask_filled = binary_fill_holes(mask,**kwargs)
        lbl_img_filled[mask_filled] = l
    return lbl_img_filled


def fill_label_holes(lbl_img, **kwargs):
    """Fill small holes in label image."""
    # TODO: refactor 'fill_label_holes' and 'edt_prob' to share code
    def grow(sl,interior):
        return tuple(slice(s.start-int(w[0]),s.stop+int(w[1])) for s,w in zip(sl,interior))
    def shrink(interior):
        return tuple(slice(int(w[0]),(-1 if w[1] else None)) for w in interior)
    objects = find_objects(lbl_img)
    lbl_img_filled = np.zeros_like(lbl_img)
    for i,sl in enumerate(objects,1):
        if sl is None: continue
        interior = [(s.start>0,s.stop<sz) for s,sz in zip(sl,lbl_img.shape)]
        shrink_slice = shrink(interior)
        grown_mask = lbl_img[grow(sl,interior)]==i
        mask_filled = binary_fill_holes(grown_mask,**kwargs)[shrink_slice]
        lbl_img_filled[sl][mask_filled] = i
    return lbl_img_filled


def sample_points(n_samples, mask, prob=None, b=2):
    """sample points to draw some of the associated polygons"""
    if b is not None and b > 0:
        # ignore image boundary, since predictions may not be reliable
        mask_b = np.zeros_like(mask)
        mask_b[b:-b,b:-b] = True
    else:
        mask_b = True

    points = np.nonzero(mask & mask_b)

    if prob is not None:
        # weighted sampling via prob
        w = prob[points[0],points[1]].astype(np.float64)
        w /= np.sum(w)
        ind = np.random.choice(len(points[0]), n_samples, replace=True, p=w)
    else:
        ind = np.random.choice(len(points[0]), n_samples, replace=True)

    points = points[0][ind], points[1][ind]
    points = np.stack(points,axis=-1)
    return points


def calculate_extents(lbl, func=np.median):
    """ Aggregate bounding box sizes of objects in label images. """
    if (isinstance(lbl,np.ndarray) and lbl.ndim==4) or (not isinstance(lbl,np.ndarray) and  isinstance(lbl,Iterable)):
        return func(np.stack([calculate_extents(_lbl,func) for _lbl in lbl], axis=0), axis=0)

    n = lbl.ndim
    n in (2,3) or _raise(ValueError("label image should be 2- or 3-dimensional (or pass a list of these)"))

    regs = regionprops(lbl)
    if len(regs) == 0:
        return np.zeros(n)
    else:
        extents = np.array([np.array(r.bbox[n:])-np.array(r.bbox[:n]) for r in regs])
        return func(extents, axis=0)


def polyroi_bytearray(x,y,pos=None,subpixel=True):
    """ Byte array of polygon roi with provided x and y coordinates
        See https://github.com/imagej/imagej1/blob/master/ij/io/RoiDecoder.java
    """
    import struct
    def _int16(x):
        return int(x).to_bytes(2, byteorder='big', signed=True)
    def _uint16(x):
        return int(x).to_bytes(2, byteorder='big', signed=False)
    def _int32(x):
        return int(x).to_bytes(4, byteorder='big', signed=True)
    def _float(x):
        return struct.pack(">f", x)

    subpixel = bool(subpixel)
    # add offset since pixel center is at (0.5,0.5) in ImageJ
    x_raw = np.asarray(x).ravel() + 0.5
    y_raw = np.asarray(y).ravel() + 0.5
    x = np.round(x_raw)
    y = np.round(y_raw)
    assert len(x) == len(y)
    top, left, bottom, right = y.min(), x.min(), y.max(), x.max() # bbox

    n_coords = len(x)
    bytes_header = 64
    bytes_total = bytes_header + n_coords*2*2 + subpixel*n_coords*2*4
    B = [0] * bytes_total
    B[ 0: 4] = map(ord,'Iout')   # magic start
    B[ 4: 6] = _int16(227)       # version
    B[ 6: 8] = _int16(0)         # roi type (0 = polygon)
    B[ 8:10] = _int16(top)       # bbox top
    B[10:12] = _int16(left)      # bbox left
    B[12:14] = _int16(bottom)    # bbox bottom
    B[14:16] = _int16(right)     # bbox right
    B[16:18] = _uint16(n_coords) # number of coordinates
    if subpixel:
        B[50:52] = _int16(128)   # subpixel resolution (option flag)
    if pos is not None:
        B[56:60] = _int32(pos)   # position (C, Z, or T)

    for i,(_x,_y) in enumerate(zip(x,y)):
        xs = bytes_header + 2*i
        ys = xs + 2*n_coords
        B[xs:xs+2] = _int16(_x - left)
        B[ys:ys+2] = _int16(_y - top)

    if subpixel:
        base1 = bytes_header + n_coords*2*2
        base2 = base1 + n_coords*4
        for i,(_x,_y) in enumerate(zip(x_raw,y_raw)):
            xs = base1 + 4*i
            ys = base2 + 4*i
            B[xs:xs+4] = _float(_x)
            B[ys:ys+4] = _float(_y)

    return bytearray(B)


def export_imagej_rois(fname, polygons, set_position=True, subpixel=True, compression=ZIP_DEFLATED):
    """ polygons assumed to be a list of arrays with shape (id,2,c) """

    if isinstance(polygons,np.ndarray):
        polygons = (polygons,)

    fname = Path(fname)
    if fname.suffix == '.zip':
        fname = fname.with_suffix('')

    with ZipFile(str(fname)+'.zip', mode='w', compression=compression) as roizip:
        for pos,polygroup in enumerate(polygons,start=1):
            for i,poly in enumerate(polygroup,start=1):
                roi = polyroi_bytearray(poly[1],poly[0], pos=(pos if set_position else None), subpixel=subpixel)
                roizip.writestr('{pos:03d}_{i:03d}.roi'.format(pos=pos,i=i), roi)


def optimize_threshold(Y, Yhat, model, nms_thresh, measure='accuracy', iou_threshs=[0.3,0.5,0.7], bracket=None, tol=1e-2, maxiter=20, verbose=1):
    """ Tune prob_thresh for provided (fixed) nms_thresh to maximize matching score (for given measure and averaged over iou_threshs). """
    np.isscalar(nms_thresh) or _raise(ValueError("nms_thresh must be a scalar"))
    iou_threshs = [iou_threshs] if np.isscalar(iou_threshs) else iou_threshs
    values = dict()

    if bracket is None:
        max_prob = max([np.max(prob) for prob, dist in Yhat])
        bracket = max_prob/2, max_prob
    # print("bracket =", bracket)

    with tqdm(total=maxiter, disable=(verbose!=1), desc="NMS threshold = %g" % nms_thresh) as progress:

        def fn(thr):
            prob_thresh = np.clip(thr, *bracket)
            value = values.get(prob_thresh)
            if value is None:
                Y_instances = [model._instances_from_prediction(y.shape, *prob_dist, prob_thresh=prob_thresh, nms_thresh=nms_thresh)[0] for y,prob_dist in zip(Y,Yhat)]
                stats = matching_dataset(Y, Y_instances, thresh=iou_threshs, show_progress=False, parallel=True)
                values[prob_thresh] = value = np.mean([s._asdict()[measure] for s in stats])
            if verbose > 1:
                print("{now}   thresh: {prob_thresh:f}   {measure}: {value:f}".format(
                    now = datetime.datetime.now().strftime('%H:%M:%S'),
                    prob_thresh = prob_thresh,
                    measure = measure,
                    value = value,
                ), flush=True)
            else:
                progress.update()
                progress.set_postfix_str("{prob_thresh:.3f} -> {value:.3f}".format(prob_thresh=prob_thresh, value=value))
                progress.refresh()
            return -value

        opt = minimize_scalar(fn, method='golden', bracket=bracket, tol=tol, options={'maxiter': maxiter})

    verbose > 1 and print('\n',opt, flush=True)
    return opt.x, -opt.fun


def _invert_dict(d):
    """ return  v-> [k_1,k_2,k_3....] for k,v in d"""
    res = defaultdict(list)
    for k,v in d.items():
        res[v].append(k)
    return res


def mask_to_categorical(y, n_classes, classes, return_cls_dict=False):
    """generates a multi-channel categorical class map

    Parameters
    ----------
    y : n-dimensional ndarray
        integer label array
    n_classes : int
        Number of different classes (without background)
    classes: dict, integer, or None
        the label to class assignment
        can be
        - dict {label -> class_id}
           the value of class_id can be
                             0   -> background class
                  1...n_classes  -> the respective object class (1 ... n_classes)
                           None  -> ignore object (prob is set to -1 for the pixels of the object, except for background class)
        - single integer value or None -> broadcast value to all labels

    Returns
    -------
    probability map of shape y.shape+(n_classes+1,) (first channel is background)

    """

    _check_label_array(y, 'y')
    if not (np.issubdtype(type(n_classes), np.integer) and n_classes>=1):
        raise ValueError(f"n_classes is '{n_classes}' but should be a positive integer")

    y_labels = np.unique(y[y>0]).tolist()

    # build dict class_id -> labels (inverse of classes)
    if np.issubdtype(type(classes), np.integer) or classes is None:
        classes = dict((k,classes) for k in y_labels)
    elif isinstance(classes, dict):
        pass
    else:
        raise ValueError("classes should be dict, single scalar, or None!")

    if not set(y_labels).issubset(set(classes.keys())):
        raise ValueError(f"all gt labels should be present in class dict provided \ngt_labels found\n{set(y_labels)}\nclass dict labels provided\n{set(classes.keys())}")

    cls_dict = _invert_dict(classes)

    # prob map
    y_mask = np.zeros(y.shape+(n_classes+1,), np.float32)

    for cls, labels in cls_dict.items():
        if cls is None:
            # prob == -1 will be used in the loss to ignore object
            y_mask[np.isin(y, labels)] = -1
        elif np.issubdtype(type(cls), np.integer) and 0 <= cls <= n_classes:
            y_mask[...,cls] = np.isin(y, labels)
        else:
            raise ValueError(f"Wrong class id '{cls}' (for n_classes={n_classes})")

    # set 0/1 background prob (unaffected by None values for class ids)
    y_mask[...,0] = (y==0)

    if return_cls_dict:
        return y_mask, cls_dict
    else:
        return y_mask


def _is_floatarray(x):
    return isinstance(x.dtype.type(0),np.floating)


def abspath(root, relpath):
    from pathlib import Path
    root = Path(root)
    if root.is_dir():
        path = root/relpath
    else:
        path = root.parent/relpath
    return str(path.absolute())