File size: 34,807 Bytes
0ca2a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union
import cv2
import math
import numpy as np
import torch
import torch.nn.functional as F
import colorsys
import itertools
import matplotlib.pyplot as plt
from matplotlib import cm
from monai.data.meta_tensor import MetaTensor
from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size
from monai.transforms import Resize
from monai.utils import (
BlendMode,
PytorchPadMode,
convert_data_type,
convert_to_dst_type,
ensure_tuple,
fall_back_tuple,
look_up_option,
optional_import,
)
from scipy import ndimage
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import affine_transform, map_coordinates
from skimage import morphology as morph
from scipy.ndimage import filters, measurements
from scipy.ndimage.morphology import (
binary_dilation,
binary_fill_holes,
distance_transform_cdt,
distance_transform_edt,
)
from skimage.segmentation import watershed
from skimage.exposure import rescale_intensity
from skimage.filters import sobel_h, sobel_v, gaussian
from skimage.morphology import disk, binary_opening
tqdm, _ = optional_import("tqdm", name="tqdm")
__all__ = ["sliding_window_inference"]
####
def normalize(mask, dtype=np.uint8):
return (255 * mask / np.amax(mask)).astype(dtype)
def fix_mirror_padding(ann):
"""Deal with duplicated instances due to mirroring in interpolation
during shape augmentation (scale, rotation etc.).
"""
current_max_id = np.amax(ann)
inst_list = list(np.unique(ann))
if 0 in inst_list:
inst_list.remove(0) # 0 is background
for inst_id in inst_list:
inst_map = np.array(ann == inst_id, np.uint8)
remapped_ids = measurements.label(inst_map)[0]
remapped_ids[remapped_ids > 1] += current_max_id
ann[remapped_ids > 1] = remapped_ids[remapped_ids > 1]
current_max_id = np.amax(ann)
return ann
####
def get_bounding_box(img):
"""Get bounding box coordinate information."""
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
# due to python indexing, need to add 1 to max
# else accessing will be 1px in the box, not out
rmax += 1
cmax += 1
return [rmin, rmax, cmin, cmax]
####
def cropping_center(x, crop_shape, batch=False):
"""Crop an input image at the centre.
Args:
x: input array
crop_shape: dimensions of cropped array
Returns:
x: cropped array
"""
orig_shape = x.shape
if not batch:
h0 = int((orig_shape[0] - crop_shape[0]) * 0.5)
w0 = int((orig_shape[1] - crop_shape[1]) * 0.5)
x = x[h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1]]
else:
h0 = int((orig_shape[1] - crop_shape[0]) * 0.5)
w0 = int((orig_shape[2] - crop_shape[1]) * 0.5)
x = x[:, h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1]]
return x
def gen_instance_hv_map(ann, crop_shape):
"""Input annotation must be of original shape.
The map is calculated only for instances within the crop portion
but based on the original shape in original image.
Perform following operation:
Obtain the horizontal and vertical distance maps for each
nuclear instance.
"""
orig_ann = ann.copy() # instance ID map
fixed_ann = fix_mirror_padding(orig_ann)
# re-cropping with fixed instance id map
crop_ann = cropping_center(fixed_ann, crop_shape)
# TODO: deal with 1 label warning
crop_ann = morph.remove_small_objects(crop_ann, min_size=30)
x_map = np.zeros(orig_ann.shape[:2], dtype=np.float32)
y_map = np.zeros(orig_ann.shape[:2], dtype=np.float32)
inst_list = list(np.unique(crop_ann))
if 0 in inst_list:
inst_list.remove(0) # 0 is background
for inst_id in inst_list:
inst_map = np.array(fixed_ann == inst_id, np.uint8)
inst_box = get_bounding_box(inst_map) # rmin, rmax, cmin, cmax
# expand the box by 2px
# Because we first pad the ann at line 207, the bboxes
# will remain valid after expansion
inst_box[0] -= 2
inst_box[2] -= 2
inst_box[1] += 2
inst_box[3] += 2
# fix inst_box
inst_box[0] = max(inst_box[0], 0)
inst_box[2] = max(inst_box[2], 0)
# inst_box[1] = min(inst_box[1], fixed_ann.shape[0])
# inst_box[3] = min(inst_box[3], fixed_ann.shape[1])
inst_map = inst_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
if inst_map.shape[0] < 2 or inst_map.shape[1] < 2:
print(f'inst_map.shape < 2: {inst_map.shape}, {inst_box}, {get_bounding_box(np.array(fixed_ann == inst_id, np.uint8))}')
continue
# instance center of mass, rounded to nearest pixel
inst_com = list(measurements.center_of_mass(inst_map))
if np.isnan(measurements.center_of_mass(inst_map)).any():
print(inst_id, fixed_ann.shape, np.array(fixed_ann == inst_id, np.uint8).shape)
print(get_bounding_box(np.array(fixed_ann == inst_id, np.uint8)))
print(inst_map)
print(inst_list)
print(inst_box)
print(np.count_nonzero(np.array(fixed_ann == inst_id, np.uint8)))
inst_com[0] = int(inst_com[0] + 0.5)
inst_com[1] = int(inst_com[1] + 0.5)
inst_x_range = np.arange(1, inst_map.shape[1] + 1)
inst_y_range = np.arange(1, inst_map.shape[0] + 1)
# shifting center of pixels grid to instance center of mass
inst_x_range -= inst_com[1]
inst_y_range -= inst_com[0]
inst_x, inst_y = np.meshgrid(inst_x_range, inst_y_range)
# remove coord outside of instance
inst_x[inst_map == 0] = 0
inst_y[inst_map == 0] = 0
inst_x = inst_x.astype("float32")
inst_y = inst_y.astype("float32")
# normalize min into -1 scale
if np.min(inst_x) < 0:
inst_x[inst_x < 0] /= -np.amin(inst_x[inst_x < 0])
if np.min(inst_y) < 0:
inst_y[inst_y < 0] /= -np.amin(inst_y[inst_y < 0])
# normalize max into +1 scale
if np.max(inst_x) > 0:
inst_x[inst_x > 0] /= np.amax(inst_x[inst_x > 0])
if np.max(inst_y) > 0:
inst_y[inst_y > 0] /= np.amax(inst_y[inst_y > 0])
####
x_map_box = x_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
x_map_box[inst_map > 0] = inst_x[inst_map > 0]
y_map_box = y_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
y_map_box[inst_map > 0] = inst_y[inst_map > 0]
hv_map = np.dstack([x_map, y_map])
return hv_map
def remove_small_objects(pred, min_size=64, connectivity=1):
"""Remove connected components smaller than the specified size.
This function is taken from skimage.morphology.remove_small_objects, but the warning
is removed when a single label is provided.
Args:
pred: input labelled array
min_size: minimum size of instance in output array
connectivity: The connectivity defining the neighborhood of a pixel.
Returns:
out: output array with instances removed under min_size
"""
out = pred
if min_size == 0: # shortcut for efficiency
return out
if out.dtype == bool:
selem = ndimage.generate_binary_structure(pred.ndim, connectivity)
ccs = np.zeros_like(pred, dtype=np.int32)
ndimage.label(pred, selem, output=ccs)
else:
ccs = out
try:
component_sizes = np.bincount(ccs.ravel())
except ValueError:
raise ValueError(
"Negative value labels are not supported. Try "
"relabeling the input with `scipy.ndimage.label` or "
"`skimage.morphology.label`."
)
too_small = component_sizes < min_size
too_small_mask = too_small[ccs]
out[too_small_mask] = 0
return out
####
def gen_targets(ann, crop_shape, **kwargs):
"""Generate the targets for the network."""
hv_map = gen_instance_hv_map(ann, crop_shape)
np_map = ann.copy()
np_map[np_map > 0] = 1
hv_map = cropping_center(hv_map, crop_shape)
np_map = cropping_center(np_map, crop_shape)
target_dict = {
"hv_map": hv_map,
"np_map": np_map,
}
return target_dict
####
def xentropy_loss(true, pred, reduction="mean"):
"""Cross entropy loss. Assumes NHWC!
Args:
pred: prediction array
true: ground truth array
Returns:
cross entropy loss
"""
epsilon = 10e-8
# scale preds so that the class probs of each sample sum to 1
pred = pred / torch.sum(pred, -1, keepdim=True)
# manual computation of crossentropy
pred = torch.clamp(pred, epsilon, 1.0 - epsilon)
loss = -torch.sum((true * torch.log(pred)), -1, keepdim=True)
loss = loss.mean() if reduction == "mean" else loss.sum()
return loss
####
def dice_loss(true, pred, smooth=1e-3):
"""`pred` and `true` must be of torch.float32. Assuming of shape NxHxWxC."""
inse = torch.sum(pred * true, (0, 1, 2))
l = torch.sum(pred, (0, 1, 2))
r = torch.sum(true, (0, 1, 2))
loss = 1.0 - (2.0 * inse + smooth) / (l + r + smooth)
loss = torch.sum(loss)
return loss
####
def mse_loss(true, pred):
"""Calculate mean squared error loss.
Args:
true: ground truth of combined horizontal
and vertical maps
pred: prediction of combined horizontal
and vertical maps
Returns:
loss: mean squared error
"""
loss = pred - true
loss = (loss * loss).mean()
return loss
####
def msge_loss(true, pred, focus):
"""Calculate the mean squared error of the gradients of
horizontal and vertical map predictions. Assumes
channel 0 is Vertical and channel 1 is Horizontal.
Args:
true: ground truth of combined horizontal
and vertical maps
pred: prediction of combined horizontal
and vertical maps
focus: area where to apply loss (we only calculate
the loss within the nuclei)
Returns:
loss: mean squared error of gradients
"""
def get_sobel_kernel(size):
"""Get sobel kernel with a given size."""
assert size % 2 == 1, "Must be odd, get size=%d" % size
h_range = torch.arange(
-size // 2 + 1,
size // 2 + 1,
dtype=torch.float32,
device="cuda",
requires_grad=False,
)
v_range = torch.arange(
-size // 2 + 1,
size // 2 + 1,
dtype=torch.float32,
device="cuda",
requires_grad=False,
)
h, v = torch.meshgrid(h_range, v_range)
kernel_h = h / (h * h + v * v + 1.0e-15)
kernel_v = v / (h * h + v * v + 1.0e-15)
return kernel_h, kernel_v
####
def get_gradient_hv(hv):
"""For calculating gradient."""
kernel_h, kernel_v = get_sobel_kernel(5)
kernel_h = kernel_h.view(1, 1, 5, 5) # constant
kernel_v = kernel_v.view(1, 1, 5, 5) # constant
h_ch = hv[..., 0].unsqueeze(1) # Nx1xHxW
v_ch = hv[..., 1].unsqueeze(1) # Nx1xHxW
# can only apply in NCHW mode
h_dh_ch = F.conv2d(h_ch, kernel_h, padding=2)
v_dv_ch = F.conv2d(v_ch, kernel_v, padding=2)
dhv = torch.cat([h_dh_ch, v_dv_ch], dim=1)
dhv = dhv.permute(0, 2, 3, 1).contiguous() # to NHWC
return dhv
focus = (focus[..., None]).float() # assume input NHW
focus = torch.cat([focus, focus], axis=-1)
true_grad = get_gradient_hv(true)
pred_grad = get_gradient_hv(pred)
loss = pred_grad - true_grad
loss = focus * (loss * loss)
# artificial reduce_mean with focused region
loss = loss.sum() / (focus.sum() + 1.0e-8)
return loss
def __proc_np_hv(pred, np_thres, ksize, overall_thres, obj_size_thres):
"""Process Nuclei Prediction with XY Coordinate Map.
Args:
pred: prediction output, assuming
channel 0 contain probability map of nuclei
channel 1 containing the regressed X-map
channel 2 containing the regressed Y-map
"""
pred = np.array(pred, dtype=np.float32)
blb_raw = pred[..., 0]
h_dir_raw = pred[..., 1]
v_dir_raw = pred[..., 2]
# processing
blb = np.array(blb_raw >= np_thres, dtype=np.int32)
blb = measurements.label(blb)[0]
blb = remove_small_objects(blb, min_size=10)
blb[blb > 0] = 1 # background is 0 already
h_dir = cv2.normalize(
h_dir_raw, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
v_dir = cv2.normalize(
v_dir_raw, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
sobelh = cv2.Sobel(h_dir, cv2.CV_64F, 1, 0, ksize=ksize)
sobelv = cv2.Sobel(v_dir, cv2.CV_64F, 0, 1, ksize=ksize)
sobelh = 1 - (
cv2.normalize(
sobelh, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
)
sobelv = 1 - (
cv2.normalize(
sobelv, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
)
overall = np.maximum(sobelh, sobelv)
overall = overall - (1 - blb)
overall[overall < 0] = 0
dist = (1.0 - overall) * blb
## nuclei values form mountains so inverse to get basins
dist = -cv2.GaussianBlur(dist, (3, 3), 0)
overall = np.array(overall >= overall_thres, dtype=np.int32)
marker = blb - overall
marker[marker < 0] = 0
marker = binary_fill_holes(marker).astype("uint8")
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
marker = cv2.morphologyEx(marker, cv2.MORPH_OPEN, kernel)
marker = measurements.label(marker)[0]
marker = remove_small_objects(marker, min_size=obj_size_thres)
proced_pred = watershed(dist, markers=marker, mask=blb)
return proced_pred
def __proc_np_hv_2(pred, np_thres=0.5, ksize=21, overall_thres=0.4, obj_size_thres=10):
"""Process Nuclei Prediction with XY Coordinate Map.
Args:
pred: prediction output, assuming
channel 0 contain probability map of nuclei
channel 1 containing the regressed X-map
channel 2 containing the regressed Y-map
"""
pred = np.array(pred, dtype=np.float32)
blb_raw = pred[..., 0]
h_dir_raw = pred[..., 1]
v_dir_raw = pred[..., 2]
# processing
blb = np.array(blb_raw >= np_thres, dtype=np.int32)
blb = measurements.label(blb)[0]
blb = remove_small_objects(blb, min_size=10)
blb[blb > 0] = 1 # background is 0 already
h_dir = rescale_intensity(h_dir_raw, out_range=(0, 1)).astype('float32')
v_dir = rescale_intensity(v_dir_raw, out_range=(0, 1)).astype('float32')
sobelh = sobel_v(h_dir).astype('float64')
sobelv = sobel_h(v_dir).astype('float64')
sobelh = 1 - rescale_intensity(sobelh, out_range=(0, 1)).astype('float32')
sobelv = 1 - rescale_intensity(sobelv, out_range=(0, 1)).astype('float32')
overall = np.maximum(sobelh, sobelv)
overall = overall - (1 - blb)
overall[overall < 0] = 0
dist = (1.0 - overall) * blb
## nuclei values form mountains so inverse to get basins
dist = - gaussian(dist, sigma=0.8)
overall = np.array(overall >= overall_thres, dtype=np.int32)
marker = blb - overall
marker[marker < 0] = 0
marker = binary_fill_holes(marker).astype("uint8")
kernel = disk(2)
marker = binary_opening(marker, kernel)
marker = measurements.label(marker)[0]
marker = remove_small_objects(marker, min_size=obj_size_thres)
proced_pred = watershed(dist, markers=marker, mask=blb)
return proced_pred
####
def colorize(ch, vmin, vmax):
"""Will clamp value value outside the provided range to vmax and vmin."""
cmap = plt.get_cmap("jet")
ch = np.squeeze(ch.astype("float32"))
vmin = vmin if vmin is not None else ch.min()
vmax = vmax if vmax is not None else ch.max()
ch[ch > vmax] = vmax # clamp value
ch[ch < vmin] = vmin
ch = (ch - vmin) / (vmax - vmin + 1.0e-16)
# take RGB from RGBA heat map
ch_cmap = (cmap(ch)[..., :3] * 255).astype("uint8")
return ch_cmap
####
def random_colors(N, bright=True):
"""Generate random colors.
To get visually distinct colors, generate them in HSV space then
convert to RGB.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
####
def visualize_instances_map(
input_image, inst_map, type_map=None, type_colour=None, line_thickness=2
):
"""Overlays segmentation results on image as contours.
Args:
input_image: input image
inst_map: instance mask with unique value for every object
type_map: type mask with unique value for every class
type_colour: a dict of {type : colour} , `type` is from 0-N
and `colour` is a tuple of (R, G, B)
line_thickness: line thickness of contours
Returns:
overlay: output image with segmentation overlay as contours
"""
overlay = np.copy((input_image).astype(np.uint8))
inst_list = list(np.unique(inst_map)) # get list of instances
inst_list.remove(0) # remove background
inst_rng_colors = random_colors(len(inst_list))
inst_rng_colors = np.array(inst_rng_colors) * 255
inst_rng_colors = inst_rng_colors.astype(np.uint8)
for inst_idx, inst_id in enumerate(inst_list):
inst_map_mask = np.array(inst_map == inst_id, np.uint8) # get single object
y1, y2, x1, x2 = get_bounding_box(inst_map_mask)
y1 = y1 - 2 if y1 - 2 >= 0 else y1
x1 = x1 - 2 if x1 - 2 >= 0 else x1
x2 = x2 + 2 if x2 + 2 <= inst_map.shape[1] - 1 else x2
y2 = y2 + 2 if y2 + 2 <= inst_map.shape[0] - 1 else y2
inst_map_crop = inst_map_mask[y1:y2, x1:x2]
contours_crop = cv2.findContours(
inst_map_crop, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# only has 1 instance per map, no need to check #contour detected by opencv
contours_crop = np.squeeze(
contours_crop[0][0].astype("int32")
) # * opencv protocol format may break
contours_crop += np.asarray([[x1, y1]]) # index correction
if type_map is not None:
type_map_crop = type_map[y1:y2, x1:x2]
type_id = np.unique(type_map_crop).max() # non-zero
inst_colour = type_colour[type_id]
else:
inst_colour = (inst_rng_colors[inst_idx]).tolist()
cv2.drawContours(overlay, [contours_crop], -1, inst_colour, line_thickness)
return overlay
def sliding_window_inference(
inputs: torch.Tensor,
roi_size: Union[Sequence[int], int],
sw_batch_size: int,
predictor: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]],
overlap: float = 0.25,
mode: Union[BlendMode, str] = BlendMode.CONSTANT,
sigma_scale: Union[Sequence[float], float] = 0.125,
padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT,
cval: float = 0.0,
sw_device: Union[torch.device, str, None] = None,
device: Union[torch.device, str, None] = None,
progress: bool = False,
roi_weight_map: Union[torch.Tensor, None] = None,
*args: Any,
**kwargs: Any,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]:
"""
Sliding window inference on `inputs` with `predictor`.
The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
could be ([128,64,256], [64,32,128]).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).
When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
To maintain the same spatial sizes, the output image will be cropped to the original input size.
Args:
inputs: input image to be processed (assuming NCHW[D])
roi_size: the spatial window size for inferences.
When its components have None or non-positives, the corresponding inputs dimension will be used.
if the components of the `roi_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
sw_batch_size: the batch size to run window slices.
predictor: given input tensor ``patch_data`` in shape NCHW[D],
The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
to ensure the scaled output ROI sizes are still integers.
If the `predictor`'s input and output spatial sizes are different,
we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
overlap: Amount of overlap between scans.
mode: {``"constant"``, ``"gaussian"``}
How to blend output of overlapping windows. Defaults to ``"constant"``.
- ``"constant``": gives equal weight to all predictions.
- ``"gaussian``": gives less weight to predictions on edges of windows.
sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
spatial dimensions.
padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
cval: fill value for 'constant' padding mode. Default: 0
sw_device: device for the window data.
By default the device (and accordingly the memory) of the `inputs` is used.
Normally `sw_device` should be consistent with the device where `predictor` is defined.
device: device for the stitched output prediction.
By default the device (and accordingly the memory) of the `inputs` is used. If for example
set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
`inputs` and `roi_size`. Output is on the `device`.
progress: whether to print a `tqdm` progress bar.
roi_weight_map: pre-computed (non-negative) weight map for each ROI.
If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
args: optional args to be passed to ``predictor``.
kwargs: optional keyword args to be passed to ``predictor``.
Note:
- input must be channel-first and have a batch dim, supports N-D sliding window.
"""
compute_dtype = inputs.dtype
num_spatial_dims = len(inputs.shape) - 2
if overlap < 0 or overlap >= 1:
raise ValueError("overlap must be >= 0 and < 1.")
# determine image spatial size and batch size
# Note: all input images must have the same image size and batch size
batch_size, _, *image_size_ = inputs.shape
if device is None:
device = inputs.device
if sw_device is None:
sw_device = inputs.device
roi_size = fall_back_tuple(roi_size, image_size_)
# in case that image size is smaller than roi size
image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims))
pad_size = []
for k in range(len(inputs.shape) - 1, 1, -1):
diff = max(roi_size[k - 2] - inputs.shape[k], 0)
half = diff // 2
pad_size.extend([half, diff - half])
inputs = F.pad(inputs, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode), value=cval)
scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
# Store all slices in list
slices = dense_patch_slices(image_size, roi_size, scan_interval)
num_win = len(slices) # number of windows per image
total_slices = num_win * batch_size # total number of windows
# Create window-level importance map
valid_patch_size = get_valid_patch_size(image_size, roi_size)
if valid_patch_size == roi_size and (roi_weight_map is not None):
importance_map = roi_weight_map
else:
try:
importance_map = compute_importance_map(valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device)
except BaseException as e:
raise RuntimeError(
"Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
) from e
importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore
# handle non-positive weights
min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3)
importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(compute_dtype)
# Perform predictions
dict_key, output_image_list, count_map_list = None, [], []
_initialized_ss = -1
is_tensor_output = True # whether the predictor's output is a tensor (instead of dict/tuple)
# for each patch
for slice_g in tqdm(range(0, total_slices, sw_batch_size)) if progress else range(0, total_slices, sw_batch_size):
slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices))
unravel_slice = [
[slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win])
for idx in slice_range
]
window_data = torch.cat(
[convert_data_type(inputs[win_slice], torch.Tensor)[0] for win_slice in unravel_slice]
).to(sw_device)
seg_prob_out = predictor(window_data, *args, **kwargs) # batched patch segmentation
# convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
seg_prob_tuple: Tuple[torch.Tensor, ...]
if isinstance(seg_prob_out, torch.Tensor):
seg_prob_tuple = (seg_prob_out,)
elif isinstance(seg_prob_out, Mapping):
if dict_key is None:
dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys
seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key)
is_tensor_output = False
else:
seg_prob_tuple = ensure_tuple(seg_prob_out)
is_tensor_output = False
# for each output in multi-output list
for ss, seg_prob in enumerate(seg_prob_tuple):
seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN
# compute zoom scale: out_roi_size/in_roi_size
zoom_scale = []
for axis, (img_s_i, out_w_i, in_w_i) in enumerate(
zip(image_size, seg_prob.shape[2:], window_data.shape[2:])
):
_scale = out_w_i / float(in_w_i)
if not (img_s_i * _scale).is_integer():
warnings.warn(
f"For spatial axis: {axis}, output[{ss}] will have non-integer shape. Spatial "
f"zoom_scale between output[{ss}] and input is {_scale}. Please pad inputs."
)
zoom_scale.append(_scale)
if _initialized_ss < ss: # init. the ss-th buffer at the first iteration
# construct multi-resolution outputs
output_classes = seg_prob.shape[1]
output_shape = [batch_size, output_classes] + [
int(image_size_d * zoom_scale_d) for image_size_d, zoom_scale_d in zip(image_size, zoom_scale)
]
# allocate memory to store the full output and the count for overlapping parts
output_image_list.append(torch.zeros(output_shape, dtype=compute_dtype, device='cpu'))
count_map_list.append(torch.zeros([1, 1] + output_shape[2:], dtype=compute_dtype, device='cpu'))
_initialized_ss += 1
# resizing the importance_map
resizer = Resize(spatial_size=seg_prob.shape[2:], mode="nearest", anti_aliasing=False)
# store the result in the proper location of the full output. Apply weights from importance map.
for idx, original_idx in zip(slice_range, unravel_slice):
# zoom roi
original_idx_zoom = list(original_idx) # 4D for 2D image, 5D for 3D image
for axis in range(2, len(original_idx_zoom)):
zoomed_start = original_idx[axis].start * zoom_scale[axis - 2]
zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2]
if not zoomed_start.is_integer() or (not zoomed_end.is_integer()):
warnings.warn(
f"For axis-{axis-2} of output[{ss}], the output roi range is not int. "
f"Input roi range is ({original_idx[axis].start}, {original_idx[axis].stop}). "
f"Spatial zoom_scale between output[{ss}] and input is {zoom_scale[axis - 2]}. "
f"Corresponding output roi range is ({zoomed_start}, {zoomed_end}).\n"
f"Please change overlap ({overlap}) or roi_size ({roi_size[axis-2]}) for axis-{axis-2}. "
"Tips: if overlap*roi_size*zoom_scale is an integer, it usually works."
)
original_idx_zoom[axis] = slice(int(zoomed_start), int(zoomed_end), None)
importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(compute_dtype)
# store results and weights
#print(output_image_list[ss][original_idx_zoom].device,importance_map_zoom.cpu().device,seg_prob.cpu().device)
output_image_list[ss][original_idx_zoom] += importance_map_zoom.cpu() * seg_prob[idx - slice_g].cpu()
count_map_list[ss][original_idx_zoom] += (
importance_map_zoom.unsqueeze(0).unsqueeze(0).expand(count_map_list[ss][original_idx_zoom].shape).cpu()
)
# account for any overlapping sections
for ss in range(len(output_image_list)):
output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(compute_dtype)
# remove padding if image_size smaller than roi_size
for ss, output_i in enumerate(output_image_list):
if torch.isnan(output_i).any() or torch.isinf(output_i).any():
warnings.warn("Sliding window inference results contain NaN or Inf.")
zoom_scale = [
seg_prob_map_shape_d / roi_size_d for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size)
]
final_slicing: List[slice] = []
for sp in range(num_spatial_dims):
slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2])
slice_dim = slice(
int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])),
int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])),
)
final_slicing.insert(0, slice_dim)
while len(final_slicing) < len(output_i.shape):
final_slicing.insert(0, slice(None))
output_image_list[ss] = output_i[final_slicing]
if dict_key is not None: # if output of predictor is a dict
final_output = dict(zip(dict_key, output_image_list))
else:
final_output = tuple(output_image_list) # type: ignore
final_output = final_output[0] if is_tensor_output else final_output # type: ignore
if isinstance(inputs, MetaTensor):
final_output = convert_to_dst_type(final_output, inputs)[0] # type: ignore
return final_output
def _get_scan_interval(
image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float
) -> Tuple[int, ...]:
"""
Compute scan interval according to the image size, roi size and overlap.
Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
use 1 instead to make sure sliding window works.
"""
if len(image_size) != num_spatial_dims:
raise ValueError("image coord different from spatial dims.")
if len(roi_size) != num_spatial_dims:
raise ValueError("roi coord different from spatial dims.")
scan_interval = []
for i in range(num_spatial_dims):
if roi_size[i] == image_size[i]:
scan_interval.append(int(roi_size[i]))
else:
interval = int(roi_size[i] * (1 - overlap))
scan_interval.append(interval if interval > 0 else 1)
return tuple(scan_interval)
|