File size: 18,161 Bytes
69524d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
from utils.utils_data import z_score_orderbook, normalize_messages, preprocess_data, one_hot_encoding_type
import pandas as pd
import numpy as np
import torch
import constants as cst
from torch.utils import data
def lobster_load(path, all_features, len_smooth, h, seq_size):
set = np.load(path)
if h == 10:
tmp = 5
if h == 20:
tmp = 4
elif h == 50:
tmp = 3
elif h == 100:
tmp = 2
elif h == 200:
tmp = 1
labels = set[seq_size-len_smooth:, -tmp]
labels = labels[np.isfinite(labels)]
labels = torch.from_numpy(labels).long()
if all_features:
input = set[:, cst.LEN_ORDER:cst.LEN_ORDER + 40]
orders = set[:, :cst.LEN_ORDER]
input = torch.from_numpy(input).float()
orders = torch.from_numpy(orders).float()
input = torch.cat((input, orders), dim=1)
else:
input = set[:, cst.LEN_ORDER:cst.LEN_ORDER + 40]
input = torch.from_numpy(input).float()
return input, labels
def labeling(X, len, h, stock):
# X is the orderbook
# len is the time window smoothing length
# h is the prediction horizon
[N, D] = X.shape
if h < len:
len = h
# Calculate previous and future mid-prices for all relevant indices
previous_ask_prices = np.lib.stride_tricks.sliding_window_view(X[:, 0], window_shape=len)[:-h]
previous_bid_prices = np.lib.stride_tricks.sliding_window_view(X[:, 2], window_shape=len)[:-h]
future_ask_prices = np.lib.stride_tricks.sliding_window_view(X[:, 0], window_shape=len)[h:]
future_bid_prices = np.lib.stride_tricks.sliding_window_view(X[:, 2], window_shape=len)[h:]
previous_mid_prices = (previous_ask_prices + previous_bid_prices) / 2
future_mid_prices = (future_ask_prices + future_bid_prices) / 2
previous_mid_prices = np.mean(previous_mid_prices, axis=1)
future_mid_prices = np.mean(future_mid_prices, axis=1)
# Compute percentage change
percentage_change = (future_mid_prices - previous_mid_prices) / previous_mid_prices
# alpha is the average percentage change of the stock
alpha = np.abs(percentage_change).mean() / 2
# alpha is the average spread of the stock in percentage of the mid-price
#alpha = (X[:, 0] - X[:, 2]).mean() / ((X[:, 0] + X[:, 2]) / 2).mean()
print(f"Alpha: {alpha}")
labels = np.where(percentage_change < -alpha, 2, np.where(percentage_change > alpha, 0, 1))
print(f"Number of labels: {np.unique(labels, return_counts=True)}")
print(f"Percentage of labels: {np.unique(labels, return_counts=True)[1] / labels.shape[0]}")
return labels
class LOBSTERDataBuilder:
def __init__(
self,
stocks,
data_dir,
date_trading_days,
split_rates,
sampling_type,
sampling_time,
sampling_quantity,
):
self.n_lob_levels = cst.N_LOB_LEVELS
self.data_dir = data_dir
self.date_trading_days = date_trading_days
self.stocks = stocks
self.split_rates = split_rates
self.sampling_type = sampling_type
self.sampling_time = sampling_time
self.sampling_quantity = sampling_quantity
def prepare_save_datasets(self):
for i in range(len(self.stocks)):
stock = self.stocks[i]
path = "{}/{}/{}_{}_{}".format(
self.data_dir,
stock,
stock,
self.date_trading_days[0],
self.date_trading_days[1],
)
self.dataframes = []
self._prepare_dataframes(path, stock)
path_where_to_save = "{}/{}".format(
self.data_dir,
stock,
)
self.train_input = pd.concat(self.dataframes[0], axis=1).values
self.val_input = pd.concat(self.dataframes[1], axis=1).values
self.test_input = pd.concat(self.dataframes[2], axis=1).values
self.train_set = pd.concat([pd.DataFrame(self.train_input), pd.DataFrame(self.train_labels_horizons)], axis=1).values
self.val_set = pd.concat([pd.DataFrame(self.val_input), pd.DataFrame(self.val_labels_horizons)], axis=1).values
self.test_set = pd.concat([pd.DataFrame(self.test_input), pd.DataFrame(self.test_labels_horizons)], axis=1).values
self._save(path_where_to_save)
def _prepare_dataframes(self, path, stock):
COLUMNS_NAMES = {"orderbook": ["sell1", "vsell1", "buy1", "vbuy1",
"sell2", "vsell2", "buy2", "vbuy2",
"sell3", "vsell3", "buy3", "vbuy3",
"sell4", "vsell4", "buy4", "vbuy4",
"sell5", "vsell5", "buy5", "vbuy5",
"sell6", "vsell6", "buy6", "vbuy6",
"sell7", "vsell7", "buy7", "vbuy7",
"sell8", "vsell8", "buy8", "vbuy8",
"sell9", "vsell9", "buy9", "vbuy9",
"sell10", "vsell10", "buy10", "vbuy10"],
"message": ["time", "event_type", "order_id", "size", "price", "direction"]}
self.num_trading_days = len(os.listdir(path))//2
split_days = self._split_days()
split_days = [i * 2 for i in split_days]
self._create_dataframes_splitted(path, split_days, COLUMNS_NAMES)
# divide all the price, both of lob and messages, by 10000, to have dollars as unit
for i in range(len(self.dataframes)):
self.dataframes[i][0]["price"] = self.dataframes[i][0]["price"] / 10000
self.dataframes[i][1].loc[:, ::2] /= 10000
train_input = self.dataframes[0][1].values
val_input = self.dataframes[1][1].values
test_input = self.dataframes[2][1].values
#create a dataframe for the labels
for i in range(len(cst.LOBSTER_HORIZONS)):
if i == 0:
train_labels = labeling(train_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
val_labels = labeling(val_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
test_labels = labeling(test_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
train_labels = np.concatenate([train_labels, np.full(shape=(train_input.shape[0] - train_labels.shape[0]), fill_value=np.inf)])
val_labels = np.concatenate([val_labels, np.full(shape=(val_input.shape[0] - val_labels.shape[0]), fill_value=np.inf)])
test_labels = np.concatenate([test_labels, np.full(shape=(test_input.shape[0] - test_labels.shape[0]), fill_value=np.inf)])
self.train_labels_horizons = pd.DataFrame(train_labels, columns=["label_h{}".format(cst.LOBSTER_HORIZONS[i])])
self.val_labels_horizons = pd.DataFrame(val_labels, columns=["label_h{}".format(cst.LOBSTER_HORIZONS[i])])
self.test_labels_horizons = pd.DataFrame(test_labels, columns=["label_h{}".format(cst.LOBSTER_HORIZONS[i])])
else:
train_labels = labeling(train_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
val_labels = labeling(val_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
test_labels = labeling(test_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
train_labels = np.concatenate([train_labels, np.full(shape=(train_input.shape[0] - train_labels.shape[0]), fill_value=np.inf)])
val_labels = np.concatenate([val_labels, np.full(shape=(val_input.shape[0] - val_labels.shape[0]), fill_value=np.inf)])
test_labels = np.concatenate([test_labels, np.full(shape=(test_input.shape[0] - test_labels.shape[0]), fill_value=np.inf)])
self.train_labels_horizons["label_h{}".format(cst.LOBSTER_HORIZONS[i])] = train_labels
self.val_labels_horizons["label_h{}".format(cst.LOBSTER_HORIZONS[i])] = val_labels
self.test_labels_horizons["label_h{}".format(cst.LOBSTER_HORIZONS[i])] = test_labels
#self._sparse_representation()
# to conclude the preprocessing we normalize the dataframes
self._normalize_dataframes()
def _sparse_representation(self):
tick_size = 0.01
for i in range(len(self.dataframes)):
dense_repr = self.dataframes[i][1].values
sparse_repr = np.zeros((dense_repr.shape[0], dense_repr.shape[1] + 1))
for row in range(dense_repr.shape[0]):
sparse_pos_ask = 0
sparse_pos_bid = 0
mid_price = (dense_repr[row][0] + dense_repr[row][2]) / 2
sparse_repr[row][-1] = mid_price
for col in range(0, dense_repr.shape[1], 2):
if col == 0:
start_ask = dense_repr[row][col]
elif col == 2:
start_bid = dense_repr[row][col]
elif col % 4 == 0:
if sparse_pos_ask < (sparse_repr.shape[1]) - 1 / 2:
actual_ask = dense_repr[row][col]
for level in range(0, actual_ask-start_ask, -tick_size):
if sparse_pos_ask < (sparse_repr.shape[1]) - 1 / 2:
if level == actual_ask - start_ask - tick_size:
sparse_repr[row][sparse_pos_ask] = dense_repr[row][col+1]
else:
sparse_repr[row][sparse_pos_ask] = 0
sparse_pos_ask += 1
else:
break
start_ask = actual_ask
else:
continue
elif col % 4 == 2:
if sparse_pos_bid < (sparse_repr.shape[1]) - 1 / 2:
actual_bid = dense_repr[row][col]
for level in range(0, start_bid-actual_bid, -tick_size):
if sparse_pos_bid < (sparse_repr.shape[1]) - 1 / 2:
if level == start_bid - actual_bid - tick_size:
sparse_repr[row][sparse_pos_ask] = dense_repr[row][col+1]
else:
sparse_repr[row][sparse_pos_ask] = 0
sparse_pos_bid += 1
else:
break
start_bid = actual_bid
else:
continue
def _create_dataframes_splitted(self, path, split_days, COLUMNS_NAMES):
# iterate over files in the data directory of self.STOCK_NAME
total_shape = 0
for i, filename in enumerate(sorted(os.listdir(path))):
f = os.path.join(path, filename)
print(f)
if os.path.isfile(f):
# then we create the df for the training set
if i < split_days[0]:
if (i % 2) == 0:
if i == 0:
train_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
else:
train_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])
else:
if i == 1:
train_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
total_shape += train_orderbooks.shape[0]
train_orderbooks, train_messages = preprocess_data([train_messages, train_orderbooks], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
if (len(train_orderbooks) != len(train_messages)):
raise ValueError("train_orderbook length is different than train_messages")
else:
train_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
total_shape += train_orderbook.shape[0]
train_orderbook, train_message = preprocess_data([train_message, train_orderbook], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
train_messages = pd.concat([train_messages, train_message], axis=0)
train_orderbooks = pd.concat([train_orderbooks, train_orderbook], axis=0)
elif split_days[0] <= i < split_days[1]: # then we are creating the df for the validation set
if (i % 2) == 0:
if (i == split_days[0]):
self.dataframes.append([train_messages, train_orderbooks])
val_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
else:
val_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])
else:
if i == split_days[0] + 1:
val_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
total_shape += val_orderbooks.shape[0]
val_orderbooks, val_messages = preprocess_data([val_messages, val_orderbooks], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
if (len(val_orderbooks) != len(val_messages)):
raise ValueError("val_orderbook length is different than val_messages")
else:
val_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
total_shape += val_orderbook.shape[0]
val_orderbook, val_message = preprocess_data([val_message, val_orderbook], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
val_messages = pd.concat([val_messages, val_message], axis=0)
val_orderbooks = pd.concat([val_orderbooks, val_orderbook], axis=0)
else: # then we are creating the df for the test set
if (i % 2) == 0:
if (i == split_days[1]):
self.dataframes.append([val_messages, val_orderbooks])
test_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
else:
test_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])
else:
if i == split_days[1] + 1:
test_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
test_orderbooks, test_messages = preprocess_data([test_messages, test_orderbooks], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
if (len(test_orderbooks) != len(test_messages)):
raise ValueError("test_orderbook length is different than test_messages")
else:
test_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
test_orderbook, test_message = preprocess_data([test_message, test_orderbook], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
test_messages = pd.concat([test_messages, test_message], axis=0)
test_orderbooks = pd.concat([test_orderbooks, test_orderbook], axis=0)
else:
raise ValueError("File {} is not a file".format(f))
self.dataframes.append([test_messages, test_orderbooks])
print(f"Total shape of the orderbooks is {total_shape}")
def _normalize_dataframes(self):
#apply z score to orderbooks
for i in range(len(self.dataframes)):
if (i == 0):
self.dataframes[i][1], mean_size, mean_prices, std_size, std_prices = z_score_orderbook(self.dataframes[i][1])
else:
self.dataframes[i][1], _, _, _, _ = z_score_orderbook(self.dataframes[i][1], mean_size, mean_prices, std_size, std_prices)
#apply z-score to size and prices of messages with the statistics of the train set
for i in range(len(self.dataframes)):
if (i == 0):
self.dataframes[i][0], mean_size, mean_prices, std_size, std_prices, mean_time, std_time, mean_depth, std_depth = normalize_messages(self.dataframes[i][0])
else:
self.dataframes[i][0], _, _, _, _, _, _, _, _ = normalize_messages(self.dataframes[i][0], mean_size, mean_prices, std_size, std_prices, mean_time, std_time, mean_depth, std_depth)
def _save(self, path_where_to_save):
np.save(path_where_to_save + "/train.npy", self.train_set)
np.save(path_where_to_save + "/val.npy", self.val_set)
np.save(path_where_to_save + "/test.npy", self.test_set)
def _split_days(self):
train = int(self.num_trading_days * self.split_rates[0])
val = int(self.num_trading_days * self.split_rates[1]) + train
test = int(self.num_trading_days * self.split_rates[2]) + val
print(f"There are {train} days for training, {val - train} days for validation and {test - val} days for testing")
return [train, val, test] |