LeoZZzzZZ's picture
Training in progress epoch 1
6162311
|
raw
history blame
2.17 kB
---
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: LeoZZzzZZ/bert-base-uncased-finetuned-fact
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# LeoZZzzZZ/bert-base-uncased-finetuned-fact
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3472
- Validation Loss: 0.7841
- Train Accuracy: 0.7071
- Train Precision: 0.7379
- Train Recall: 0.7071
- Train F1: 0.7053
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 90930, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Recall | Train F1 | Epoch |
|:----------:|:---------------:|:--------------:|:---------------:|:------------:|:--------:|:-----:|
| 0.5449 | 0.6913 | 0.7078 | 0.7255 | 0.7078 | 0.7062 | 0 |
| 0.3472 | 0.7841 | 0.7071 | 0.7379 | 0.7071 | 0.7053 | 1 |
### Framework versions
- Transformers 4.41.0
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1