|
--- |
|
license: apache-2.0 |
|
language: |
|
- hi |
|
tags: |
|
- automatic-speech-recognition |
|
- Harveenchadha/indic-voice |
|
- generated_from_trainer |
|
model-index: |
|
- name: Wav2Vec2_xls_r_openslr_Hi_V2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Wav2Vec2_xls_r_openslr_Hi_V2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [Harveenchadha/indic-voice](https://huggingface.co/datasets/Harveenchadha/indic-voice) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3184 |
|
- Wer: 0.3104 |
|
- Cer: 0.0958 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 12 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:| |
|
| 7.1097 | 0.48 | 300 | 0.9965 | 3.3989 | 1.0 | |
|
| 3.0235 | 0.96 | 600 | 0.3163 | 1.3183 | 0.7977 | |
|
| 1.1419 | 1.44 | 900 | 0.1913 | 0.6416 | 0.5543 | |
|
| 0.8242 | 1.92 | 1200 | 0.1608 | 0.5063 | 0.4804 | |
|
| 0.6876 | 2.56 | 1600 | 0.1387 | 0.4401 | 0.4280 | |
|
| 0.5868 | 3.21 | 2000 | 0.1249 | 0.3940 | 0.3907 | |
|
| 0.5285 | 3.85 | 2400 | 0.1200 | 0.3661 | 0.3763 | |
|
| 0.5 | 4.49 | 2800 | 0.3528 | 0.3610 | 0.1136 | |
|
| 0.4538 | 5.13 | 3200 | 0.3403 | 0.3485 | 0.1086 | |
|
| 0.4165 | 5.77 | 3600 | 0.3335 | 0.3439 | 0.1062 | |
|
| 0.3989 | 6.41 | 4000 | 0.3264 | 0.3340 | 0.1036 | |
|
| 0.3679 | 7.05 | 4400 | 0.3256 | 0.3287 | 0.1013 | |
|
| 0.3517 | 7.69 | 4800 | 0.3212 | 0.3223 | 0.1002 | |
|
| 0.3357 | 8.33 | 5200 | 0.3173 | 0.3196 | 0.0986 | |
|
| 0.3225 | 8.97 | 5600 | 0.3142 | 0.3177 | 0.0985 | |
|
| 0.3057 | 9.62 | 6000 | 0.3199 | 0.3156 | 0.0975 | |
|
| 0.2972 | 10.26 | 6400 | 0.3139 | 0.3128 | 0.0967 | |
|
| 0.2881 | 10.9 | 6800 | 0.3184 | 0.3107 | 0.0957 | |
|
| 0.2791 | 11.54 | 7200 | 0.3184 | 0.3104 | 0.0958 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|