File size: 1,425 Bytes
a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 0be120a a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 a7468b7 b6de052 0aa2b2a b6de052 a7468b7 b6de052 a7468b7 0be120a 0aa2b2a 0be120a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
model-index:
- name: whisper-small-vi
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-vi
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.1146
- eval_wer: 8.8000
- eval_runtime: 27.7238
- eval_samples_per_second: 2.777
- eval_steps_per_second: 0.361
- epoch: 25.9259
- step: 700
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|