File size: 1,425 Bytes
a7468b7
 
b6de052
 
 
 
 
 
 
a7468b7
 
b6de052
 
a7468b7
b6de052
a7468b7
b6de052
 
0be120a
 
 
 
 
 
 
a7468b7
b6de052
a7468b7
b6de052
a7468b7
b6de052
a7468b7
b6de052
a7468b7
b6de052
a7468b7
b6de052
a7468b7
b6de052
a7468b7
b6de052
a7468b7
b6de052
 
 
 
 
0aa2b2a
b6de052
 
 
 
a7468b7
b6de052
a7468b7
0be120a
 
0aa2b2a
0be120a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
model-index:
- name: whisper-small-vi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-vi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.1146
- eval_wer: 8.8000
- eval_runtime: 27.7238
- eval_samples_per_second: 2.777
- eval_steps_per_second: 0.361
- epoch: 25.9259
- step: 700

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3