File size: 5,157 Bytes
b9425fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# --------------------------------------------------------
# Reversible Column Networks
# Copyright (c) 2022 Megvii Inc.
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Yuxuan Cai
# --------------------------------------------------------

import queue
from typing import Dict, Sequence
import warnings
import os
import torch
import numpy as np
import torch.distributed as dist
from torchvision import datasets, transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import Mixup
from timm.data import create_transform


from .samplers import SubsetRandomSampler

def build_loader(config):

    config.defrost()
    dataset_train, _ = build_dataset(is_train=True, config=config)
    config.freeze()
    print(f"global rank {dist.get_rank()} successfully build train dataset")


    sampler_train = torch.utils.data.DistributedSampler(
        dataset_train,  shuffle=True
    )

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train, sampler=sampler_train,
        batch_size=config.DATA.BATCH_SIZE,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=True,
        persistent_workers=True
    )

    #-----------------------------------Val Dataset-----------------------------------

    dataset_val, _ = build_dataset(is_train=False, config=config)
    print(f"global rank {dist.get_rank()} successfully build val dataset")

    indices = np.arange(dist.get_rank(), len(dataset_val), dist.get_world_size())
    sampler_val = SubsetRandomSampler(indices)

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val, sampler=sampler_val,
        batch_size=config.DATA.BATCH_SIZE,
        shuffle=False,
        num_workers=config.DATA.NUM_WORKERS,
        pin_memory=config.DATA.PIN_MEMORY,
        drop_last=False,
        persistent_workers=True
    )
    
    # setup mixup / cutmix
    mixup_fn = None
    mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
    if mixup_active:
        mixup_fn = Mixup(
            mixup_alpha=config.AUG.MIXUP, cutmix_alpha=config.AUG.CUTMIX, cutmix_minmax=config.AUG.CUTMIX_MINMAX,
            prob=config.AUG.MIXUP_PROB, switch_prob=config.AUG.MIXUP_SWITCH_PROB, mode=config.AUG.MIXUP_MODE,
            label_smoothing=config.MODEL.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES)

    return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn


def build_dataset(is_train, config):
    transform = build_transform(is_train, config)
    if config.DATA.DATASET == 'imagenet':
        prefix = 'train' if is_train else 'val'
        root = os.path.join(config.DATA.DATA_PATH, prefix)
        dataset = datasets.ImageFolder(root, transform=transform)
        nb_classes = 1000
    elif config.DATA.DATASET == 'imagenet22K':
        if is_train:
            root = config.DATA.DATA_PATH
        else:
            root = config.DATA.EVAL_DATA_PATH
        dataset = datasets.ImageFolder(root, transform=transform)
        nb_classes = 21841
    else:
        raise NotImplementedError("We only support ImageNet Now.")

    return dataset, nb_classes


def build_transform(is_train, config):
    resize_im = config.DATA.IMG_SIZE > 32
    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=config.DATA.IMG_SIZE,
            is_training=True,
            color_jitter=config.AUG.COLOR_JITTER if config.AUG.COLOR_JITTER > 0 else None,
            auto_augment=config.AUG.AUTO_AUGMENT if config.AUG.AUTO_AUGMENT != 'none' else None,
            re_prob=config.AUG.REPROB,
            re_mode=config.AUG.REMODE,
            re_count=config.AUG.RECOUNT,
            interpolation=config.DATA.INTERPOLATION,
        )
        if not resize_im:
            # replace RandomResizedCropAndInterpolation with
            # RandomCrop
            transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4)
        return transform

    t = []
    if resize_im:
        if config.DATA.IMG_SIZE > 224:  
            t.append(
            transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE), 
                            interpolation=transforms.InterpolationMode.BICUBIC), 
        )
            print(f"Warping {config.DATA.IMG_SIZE} size input images...")
        elif config.TEST.CROP:
            size = int((256 / 224) * config.DATA.IMG_SIZE)
            t.append(
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC),
                # to maintain same ratio w.r.t. 224 images
            )
            t.append(transforms.CenterCrop(config.DATA.IMG_SIZE))
        else:
            t.append(
                transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE),
                                  interpolation=transforms.InterpolationMode.BICUBIC)
            )

    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
    return transforms.Compose(t)