Lamimad commited on
Commit
8b2b6c0
1 Parent(s): da55a77

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -3,4 +3,55 @@ license: apache-2.0
3
  language:
4
  - en
5
  pipeline_tag: text-generation
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  language:
4
  - en
5
  pipeline_tag: text-generation
6
+ ---
7
+
8
+
9
+ ---
10
+ license: apache-2.0
11
+ language:
12
+ - en
13
+ pipeline_tag: text-generation
14
+ ---
15
+
16
+ # Model Card for Luna-standard-0.0.1
17
+
18
+ The Luna-standard-0.0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets.
19
+
20
+ For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
21
+
22
+ ## Instruction format
23
+
24
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
25
+
26
+ E.g.
27
+ ```
28
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
29
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
30
+ "[INST] Do you have mayonnaise recipes? [/INST]"
31
+ ```
32
+
33
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
34
+
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+ device = "cuda" # the device to load the model onto
38
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
39
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
40
+ messages = [
41
+ {"role": "user", "content": "What is your favourite condiment?"},
42
+ {"role": "Luna", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
43
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
44
+ ]
45
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
46
+ model_inputs = encodeds.to(device)
47
+ model.to(device)
48
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
49
+ decoded = tokenizer.batch_decode(generated_ids)
50
+ print(decoded[0])
51
+ ```
52
+
53
+ ## Model Architecture
54
+ This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
55
+ - Grouped-Query Attention
56
+ - Sliding-Window Attention
57
+ - Byte-fallback BPE tokenizer