metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
- accuracy
model-index:
- name: ScCvT_fold_5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: F1
type: f1
value: 0.909963393596575
- name: Accuracy
type: accuracy
value: 0.9102764736567553
ScCvT_fold_5
This model is a fine-tuned version of microsoft/cvt-13 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3026
- F1: 0.9100
- Roc Auc: 0.9850
- Accuracy: 0.9103
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 65
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
1.8858 | 1.0 | 60 | 1.8336 | 0.3756 | 0.6770 | 0.3062 |
1.7573 | 2.0 | 120 | 1.5748 | 0.5904 | 0.8013 | 0.5342 |
1.6042 | 3.0 | 180 | 1.2448 | 0.6648 | 0.8782 | 0.6270 |
1.4011 | 4.0 | 240 | 1.0728 | 0.6856 | 0.9162 | 0.6458 |
1.3588 | 5.0 | 300 | 0.8680 | 0.7432 | 0.9329 | 0.7131 |
1.2291 | 6.0 | 360 | 0.8431 | 0.7378 | 0.9400 | 0.7053 |
1.145 | 7.0 | 420 | 0.8501 | 0.7355 | 0.9453 | 0.6974 |
1.0652 | 8.0 | 480 | 0.7471 | 0.7559 | 0.9533 | 0.7251 |
1.0174 | 9.0 | 540 | 0.5592 | 0.8140 | 0.9634 | 0.8002 |
0.892 | 10.0 | 600 | 0.6785 | 0.7726 | 0.9614 | 0.7480 |
0.8584 | 11.0 | 660 | 0.5690 | 0.8088 | 0.9676 | 0.7898 |
0.8662 | 12.0 | 720 | 0.6049 | 0.7911 | 0.9696 | 0.7679 |
0.9131 | 13.0 | 780 | 0.4984 | 0.8295 | 0.9717 | 0.8179 |
0.8616 | 14.0 | 840 | 0.4755 | 0.8301 | 0.9722 | 0.8190 |
0.8398 | 15.0 | 900 | 0.5121 | 0.8237 | 0.9721 | 0.8101 |
0.6746 | 16.0 | 960 | 0.4823 | 0.8322 | 0.9742 | 0.8185 |
0.779 | 17.0 | 1020 | 0.5121 | 0.8193 | 0.9749 | 0.8002 |
0.7436 | 18.0 | 1080 | 0.4911 | 0.8270 | 0.9740 | 0.8153 |
0.7586 | 19.0 | 1140 | 0.4376 | 0.8439 | 0.9769 | 0.8346 |
0.688 | 20.0 | 1200 | 0.4732 | 0.8377 | 0.9784 | 0.8247 |
0.8294 | 21.0 | 1260 | 0.4889 | 0.8323 | 0.9777 | 0.8138 |
0.7451 | 22.0 | 1320 | 0.4015 | 0.8605 | 0.9787 | 0.8545 |
0.708 | 23.0 | 1380 | 0.3818 | 0.8677 | 0.9800 | 0.8612 |
0.6112 | 24.0 | 1440 | 0.4229 | 0.8651 | 0.9781 | 0.8565 |
0.6936 | 25.0 | 1500 | 0.3678 | 0.8714 | 0.9809 | 0.8670 |
0.6486 | 26.0 | 1560 | 0.3565 | 0.8722 | 0.9807 | 0.8685 |
0.6078 | 27.0 | 1620 | 0.3489 | 0.8760 | 0.9815 | 0.8722 |
0.6513 | 28.0 | 1680 | 0.3546 | 0.8774 | 0.9821 | 0.8727 |
0.6562 | 29.0 | 1740 | 0.3420 | 0.8816 | 0.9817 | 0.8774 |
0.6561 | 30.0 | 1800 | 0.3649 | 0.8745 | 0.9818 | 0.8691 |
0.6056 | 31.0 | 1860 | 0.3692 | 0.8730 | 0.9823 | 0.8670 |
0.5927 | 32.0 | 1920 | 0.3584 | 0.8825 | 0.9822 | 0.8779 |
0.6021 | 33.0 | 1980 | 0.3345 | 0.8870 | 0.9821 | 0.8842 |
0.6052 | 34.0 | 2040 | 0.3388 | 0.8887 | 0.9820 | 0.8868 |
0.6026 | 35.0 | 2100 | 0.3161 | 0.8938 | 0.9831 | 0.8925 |
0.5735 | 36.0 | 2160 | 0.3324 | 0.8952 | 0.9825 | 0.8957 |
0.6058 | 37.0 | 2220 | 0.3262 | 0.8932 | 0.9829 | 0.8905 |
0.5648 | 38.0 | 2280 | 0.3243 | 0.8931 | 0.9834 | 0.8899 |
0.6248 | 39.0 | 2340 | 0.3499 | 0.8825 | 0.9837 | 0.8769 |
0.4926 | 40.0 | 2400 | 0.3066 | 0.9045 | 0.9837 | 0.9045 |
0.5341 | 41.0 | 2460 | 0.3037 | 0.9042 | 0.9835 | 0.9061 |
0.5215 | 42.0 | 2520 | 0.3193 | 0.8968 | 0.9832 | 0.8967 |
0.5892 | 43.0 | 2580 | 0.3276 | 0.8910 | 0.9837 | 0.8884 |
0.559 | 44.0 | 2640 | 0.3129 | 0.9006 | 0.9843 | 0.8988 |
0.5306 | 45.0 | 2700 | 0.3137 | 0.9024 | 0.9839 | 0.9035 |
0.4789 | 46.0 | 2760 | 0.3128 | 0.8984 | 0.9842 | 0.8972 |
0.5518 | 47.0 | 2820 | 0.3117 | 0.9057 | 0.9838 | 0.9051 |
0.5201 | 48.0 | 2880 | 0.3110 | 0.9023 | 0.9842 | 0.9014 |
0.5698 | 49.0 | 2940 | 0.3031 | 0.9074 | 0.9841 | 0.9071 |
0.5227 | 50.0 | 3000 | 0.3343 | 0.9007 | 0.9834 | 0.8988 |
0.5416 | 51.0 | 3060 | 0.3117 | 0.9078 | 0.9837 | 0.9082 |
0.5882 | 52.0 | 3120 | 0.3132 | 0.9049 | 0.9835 | 0.9051 |
0.4286 | 53.0 | 3180 | 0.3133 | 0.9064 | 0.9837 | 0.9066 |
0.5278 | 54.0 | 3240 | 0.3050 | 0.9080 | 0.9847 | 0.9077 |
0.586 | 55.0 | 3300 | 0.3063 | 0.9065 | 0.9842 | 0.9082 |
0.4708 | 56.0 | 3360 | 0.3119 | 0.9058 | 0.9840 | 0.9056 |
0.5512 | 57.0 | 3420 | 0.3140 | 0.9023 | 0.9842 | 0.9014 |
0.5535 | 58.0 | 3480 | 0.3079 | 0.9046 | 0.9847 | 0.9045 |
0.4817 | 59.0 | 3540 | 0.3077 | 0.9061 | 0.9845 | 0.9061 |
0.5381 | 60.0 | 3600 | 0.3122 | 0.9015 | 0.9848 | 0.9009 |
0.6305 | 61.0 | 3660 | 0.3026 | 0.9100 | 0.9850 | 0.9103 |
0.4658 | 62.0 | 3720 | 0.3044 | 0.9093 | 0.9851 | 0.9092 |
0.4873 | 63.0 | 3780 | 0.3076 | 0.9074 | 0.9849 | 0.9071 |
0.5791 | 64.0 | 3840 | 0.3045 | 0.9077 | 0.9850 | 0.9077 |
0.5871 | 65.0 | 3900 | 0.3028 | 0.9076 | 0.9852 | 0.9071 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3