File size: 1,914 Bytes
5c940ee
 
 
da82538
 
 
 
 
 
 
 
5c940ee
 
8fcc382
5c940ee
024415a
 
8fcc382
5c940ee
fb2d816
f0d7494
 
 
 
fb2d816
f0d7494
 
 
 
 
fb2d816
 
 
 
 
f0d7494
 
024415a
 
 
 
 
 
 
 
 
 
54ae41d
 
 
 
 
 
 
 
 
 
024415a
fb2d816
 
 
 
 
 
f0d7494
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
language: en
license: mit
tags:
- audio
- captioning
- text
- audio-captioning
- automated-audio-captioning
task_categories:
- audio-captioning
---

# CoNeTTE (ConvNext-Transformer with Task Embedding) for Automated Audio Captioning

<font color='red'>This model is currently in developement, and all the required files are not yet available.</font>

This model generate a short textual description of any audio file.

## Installation
```bash
pip install conette
```

## Usage
```py
from conette import CoNeTTEConfig, CoNeTTEModel

config = CoNeTTEConfig.from_pretrained("Labbeti/conette")
model = CoNeTTEModel.from_pretrained("Labbeti/conette", config=config)

path = "/my/path/to/audio.wav"
outputs = model(path)
cands = outputs["cands"][0]
print(cands)
```

## Single model performance
| Dataset | SPIDEr (%) | SPIDEr-FL (%) | FENSE (%) |
| ------------- | ------------- | ------------- | ------------- |
| AudioCaps | 44.14 | 43.98 | 60.81 |
| Clotho | 30.97 | 30.87 | 51.72 |

## Citation
The preprint version of the paper describing CoNeTTE is available on arxiv: https://arxiv.org/pdf/2309.00454.pdf

```
@misc{labbé2023conette,
	title        = {CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding},
	author       = {Étienne Labbé and Thomas Pellegrini and Julien Pinquier},
	year         = 2023,
	journal      = {arXiv preprint arXiv:2309.00454},
	url          = {https://arxiv.org/pdf/2309.00454.pdf},
	eprint       = {2309.00454},
	archiveprefix = {arXiv},
	primaryclass = {cs.SD}
}
```

## Additional information

The encoder part of the architecture is based on a ConvNeXt model for audio classification, available here: https://huggingface.co/topel/ConvNeXt-Tiny-AT.
The encoder weights used are named "convnext_tiny_465mAP_BL_AC_70kit.pth", available on Zenodo: https://zenodo.org/record/8020843.

It was created by [@Labbeti](https://hf.co/Labbeti).