File size: 1,714 Bytes
68bfc0c 115d230 9eac1c9 68bfc0c 9eac1c9 5f8bd86 115d230 5f8bd86 115d230 04e9411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: creativeml-openrail-m
---
# Model Card for Kanji_ETL8G
### Summary:
```
ETL8B
- 153916 samples
- 956 classes (hiragana and kanji)
- 161 samples each class
- image_width: 64px
- image_height: 63px
```
## Model Details
- **Model Name:** Kanji_ETL8G
- **Version:** 1.0.0
- **Model Type:** Neural Network
- **Framework:** PyTorch
## Model Description
This model is trained on a dataset derived from the ETL8G dataset to recognize Kanji characters from 64x64 grayscale images. The primary use-case is for optical character recognition (OCR) for handwritten Kanji characters.
## Intended Use
The primary application of this model is for OCR tasks to recognize handwritten Kanji characters in images, with potential extensions for applications like smart dictionary lookup, handwriting-based user authentication, and so on.
## Limitations
This model might have limitations regarding:
- Variability in handwriting styles not present in the training set. (161 samples per character/class were used)
- Noises and artifacts in input images.
- Characters written in unconventional ways.
## Data Details
### Training Data:
- **Dataset:** Derived from the ETL8G dataset (hhttp://etlcdb.db.aist.go.jp/specification-of-etl-8)
- **Size:** 153916 samples
- **Data Type:** 64x64 grayscale images of handwritten Kanji characters
- **Labels:** 956 unique characters (classes)
## Model Files
- **PyTorch Model:** Kanji_ETL8G.pth
- **ONNX Model:** Kanji_ETL8G.onnx
- **CoreML Model:** next effort....
## Usage
```python
import torch
model = torch.load('Kanji_ETL8G.pth')
model.eval()
# Assuming input image tensor is `input_tensor`
output = model(input_tensor)
predicted_label = torch.argmax(output).item()
``` |