File size: 2,549 Bytes
4cb8b14 89b782b 4cb8b14 89b782b 4cb8b14 89b782b 4cb8b14 49ffe3f 72cb7d6 3b0ab08 fc7cfdd 4b48f4d c045bec c45a2a5 4cb8b14 49ffe3f 72cb7d6 3b0ab08 fc7cfdd 4b48f4d c045bec c45a2a5 4cb8b14 89b782b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
pipeline_tag: question-answering
tags:
- question-answering
- transformers
- generated_from_trainer
datasets:
- squad_v2
- LLukas22/nq-simplified
language:
- en
---
# all-MiniLM-L12-v2-qa-en
This model is an extractive qa model.
It's a fine-tuned version of [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the following datasets: [squad_v2](https://huggingface.co/datasets/squad_v2), [LLukas22/nq-simplified](https://huggingface.co/datasets/LLukas22/nq-simplified).
## Usage
You can use the model like this:
```python
from transformers import pipeline
#Make predictions
model_name = "LLukas22/all-MiniLM-L12-v2-qa-en"
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
"question": "What's my name?",
"context": "My name is Clara and I live in Berkeley."
}
result = nlp(QA_input)
print(result)
```
Alternatively you can load the model and tokenizer on their own:
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
#Make predictions
model_name = "LLukas22/all-MiniLM-L12-v2-qa-en"
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2E-05
- per device batch size: 60
- effective batch size: 180
- seed: 42
- optimizer: AdamW with betas (0.9,0.999) and eps 1E-08
- weight decay: 1E-02
- D-Adaptation: False
- Warmup: False
- number of epochs: 10
- mixed_precision_training: bf16
## Training results
| Epoch | Train Loss | Validation Loss |
| ----- | ---------- | --------------- |
| 0 | 2.65 | 1.88 |
| 1 | 1.83 | 1.74 |
| 2 | 1.69 | 1.69 |
| 3 | 1.63 | 1.68 |
| 4 | 1.6 | 1.67 |
| 5 | 1.58 | 1.66 |
| 6 | 1.57 | 1.66 |
| 7 | 1.57 | 1.66 |
## Evaluation results
| Epoch | f1 | exact_match |
| ----- | ----- | ----- |
| 0 | 0.507 | 0.378 |
| 1 | 0.53 | 0.418 |
| 2 | 0.544 | 0.431 |
| 3 | 0.552 | 0.429 |
| 4 | 0.557 | 0.439 |
| 5 | 0.561 | 0.438 |
| 6 | 0.564 | 0.441 |
| 7 | 0.566 | 0.441 |
## Framework versions
- Transformers: 4.25.1
- PyTorch: 2.0.0+cu118
- PyTorch Lightning: 1.8.6
- Datasets: 2.7.1
- Tokenizers: 0.13.1
- Sentence Transformers: 2.2.2
## Additional Information
This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Retrieval-Augmented-QA). |