|
|
""" |
|
|
Optimized Chess Tokenizer using pure UCI notation. |
|
|
|
|
|
This achieves ~84 vocab size by: |
|
|
1. Using only squares (a1-h8) and promotion pieces (q,r,b,n) |
|
|
2. Decomposing moves into from_square, to_square, (optional) promotion |
|
|
3. No piece types, no color, no annotations |
|
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import json |
|
|
import os |
|
|
from typing import Dict, List, Optional |
|
|
|
|
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
|
|
|
class ChessTokenizer(PreTrainedTokenizer): |
|
|
|
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
vocab_files_names = {"vocab_file": "vocab.json"} |
|
|
|
|
|
|
|
|
PAD_TOKEN = "[PAD]" |
|
|
BOS_TOKEN = "[BOS]" |
|
|
EOS_TOKEN = "[EOS]" |
|
|
UNK_TOKEN = "[UNK]" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_file: Optional[str] = None, |
|
|
vocab: Optional[Dict[str, int]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
self._pad_token = self.PAD_TOKEN |
|
|
self._bos_token = self.BOS_TOKEN |
|
|
self._eos_token = self.EOS_TOKEN |
|
|
self._unk_token = self.UNK_TOKEN |
|
|
|
|
|
|
|
|
kwargs.pop("pad_token", None) |
|
|
kwargs.pop("bos_token", None) |
|
|
kwargs.pop("eos_token", None) |
|
|
kwargs.pop("unk_token", None) |
|
|
|
|
|
|
|
|
if vocab is not None: |
|
|
self._vocab = vocab |
|
|
elif vocab_file is not None and os.path.exists(vocab_file): |
|
|
with open(vocab_file, "r", encoding="utf-8") as f: |
|
|
self._vocab = json.load(f) |
|
|
else: |
|
|
self._vocab = self._create_default_vocab() |
|
|
|
|
|
|
|
|
self._ids_to_tokens = {v: k for k, v in self._vocab.items()} |
|
|
|
|
|
super().__init__( |
|
|
pad_token=self._pad_token, |
|
|
bos_token=self._bos_token, |
|
|
eos_token=self._eos_token, |
|
|
unk_token=self._unk_token, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
def _create_default_vocab(self) -> Dict[str, int]: |
|
|
""" |
|
|
Create vocabulary with all possible squares and promotion pieces. |
|
|
This ensures deterministic vocab size of exactly 72 tokens. |
|
|
""" |
|
|
tokens = [self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN] |
|
|
|
|
|
|
|
|
for file in 'abcdefgh': |
|
|
for rank in '12345678': |
|
|
tokens.append(f"{file}{rank}") |
|
|
|
|
|
|
|
|
tokens.extend(['q', 'r', 'b', 'n']) |
|
|
|
|
|
vocab = {token: idx for idx, token in enumerate(tokens)} |
|
|
return vocab |
|
|
|
|
|
@classmethod |
|
|
def build_vocab_from_dataset( |
|
|
cls, |
|
|
dataset_name: str = "dlouapre/lichess_2025-01_1M", |
|
|
split: str = "train", |
|
|
column: str = "text", |
|
|
min_frequency: int = 1, |
|
|
max_samples: Optional[int] = 100000, |
|
|
) -> "ChessTokenizer": |
|
|
""" |
|
|
Build tokenizer from dataset by converting to UCI format. |
|
|
|
|
|
This will create a vocabulary of ~72-84 tokens. |
|
|
""" |
|
|
from datasets import load_dataset |
|
|
from collections import Counter |
|
|
|
|
|
dataset = load_dataset(dataset_name, split=split) |
|
|
|
|
|
if max_samples is not None: |
|
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
|
|
|
|
token_counts = Counter() |
|
|
|
|
|
|
|
|
for example in dataset: |
|
|
moves = example[column].strip().split() |
|
|
for move in moves: |
|
|
|
|
|
uci_tokens = cls._extended_to_uci_tokens(move) |
|
|
token_counts.update(uci_tokens) |
|
|
|
|
|
|
|
|
tokens = [ |
|
|
token for token, count in token_counts.items() |
|
|
if count >= min_frequency |
|
|
] |
|
|
|
|
|
|
|
|
tokens = sorted(set(tokens)) |
|
|
|
|
|
|
|
|
special_tokens = [cls.PAD_TOKEN, cls.BOS_TOKEN, cls.EOS_TOKEN, cls.UNK_TOKEN] |
|
|
vocab = {token: idx for idx, token in enumerate(special_tokens + tokens)} |
|
|
|
|
|
return cls(vocab=vocab) |
|
|
|
|
|
@staticmethod |
|
|
def _extended_to_uci_tokens(move: str) -> List[str]: |
|
|
""" |
|
|
Convert extended UCI format to decomposed UCI tokens. |
|
|
|
|
|
Input: "WPe2e4" or "BQd8h4(x+)" or "WPe7e8=Q" |
|
|
Output: ["e2", "e4"] or ["d8", "h4"] or ["e7", "e8", "q"] |
|
|
""" |
|
|
if len(move) < 6: |
|
|
return [] |
|
|
|
|
|
|
|
|
from_sq = move[2:4] |
|
|
to_sq = move[4:6] |
|
|
|
|
|
tokens = [from_sq, to_sq] |
|
|
|
|
|
|
|
|
if "=" in move: |
|
|
promo_idx = move.index("=") |
|
|
if promo_idx + 1 < len(move): |
|
|
promo = move[promo_idx + 1].lower() |
|
|
if promo in 'qrbn': |
|
|
tokens.append(promo) |
|
|
|
|
|
return tokens |
|
|
|
|
|
@property |
|
|
def vocab_size(self) -> int: |
|
|
return len(self._vocab) |
|
|
|
|
|
def get_vocab(self) -> Dict[str, int]: |
|
|
return dict(self._vocab) |
|
|
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
|
""" |
|
|
Tokenize a string of moves. |
|
|
|
|
|
Input can be either: |
|
|
- Extended UCI: "WPe2e4 BPe7e5" |
|
|
- Decomposed UCI: "e2 e4 e7 e5" |
|
|
""" |
|
|
tokens = text.strip().split() |
|
|
|
|
|
|
|
|
|
|
|
result = [] |
|
|
for token in tokens: |
|
|
if len(token) >= 6 and token[0] in 'WB' and token[1] in 'PNBRQK': |
|
|
|
|
|
result.extend(self._extended_to_uci_tokens(token)) |
|
|
else: |
|
|
|
|
|
result.append(token) |
|
|
|
|
|
return result |
|
|
|
|
|
def _convert_token_to_id(self, token: str) -> int: |
|
|
return self._vocab.get(token, self._vocab.get(self.UNK_TOKEN, 0)) |
|
|
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
|
return self._ids_to_tokens.get(index, self.UNK_TOKEN) |
|
|
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
|
"""Convert tokens back to string (space-separated).""" |
|
|
special = {self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN} |
|
|
return " ".join(t for t in tokens if t not in special) |
|
|
|
|
|
def save_vocabulary( |
|
|
self, |
|
|
save_directory: str, |
|
|
filename_prefix: Optional[str] = None, |
|
|
) -> tuple: |
|
|
if not os.path.isdir(save_directory): |
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
vocab_file = os.path.join( |
|
|
save_directory, |
|
|
(filename_prefix + "-" if filename_prefix else "") + "vocab.json", |
|
|
) |
|
|
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f: |
|
|
json.dump(self._vocab, f, ensure_ascii=False, indent=2) |
|
|
|
|
|
return (vocab_file,) |