minhdc commited on
Commit
d0067d5
·
verified ·
1 Parent(s): 604aab9

Chess Challenge submission by minhdc

Browse files
Files changed (8) hide show
  1. README.md +26 -0
  2. config.json +24 -0
  3. model.py +438 -0
  4. model.safetensors +3 -0
  5. special_tokens_map.json +6 -0
  6. tokenizer.py +217 -0
  7. tokenizer_config.json +50 -0
  8. vocab.json +70 -0
README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - chess
5
+ - llm-course
6
+ - chess-challenge
7
+ license: mit
8
+ ---
9
+
10
+ # chess-duc-backup
11
+
12
+ Chess model submitted to the LLM Course Chess Challenge.
13
+
14
+ ## Submission Info
15
+
16
+ - **Submitted by**: [minhdc](https://huggingface.co/minhdc)
17
+ - **Parameters**: 998,518
18
+ - **Organization**: LLM-course
19
+
20
+ ## Model Details
21
+
22
+ - **Architecture**: Chess Transformer (GPT-style)
23
+ - **Vocab size**: 68
24
+ - **Embedding dim**: 128
25
+ - **Layers**: 6
26
+ - **Heads**: 8
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ChessForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "model.ChessConfig",
7
+ "AutoModelForCausalLM": "model.ChessForCausalLM"
8
+ },
9
+ "bos_token_id": 1,
10
+ "dropout": 0.05,
11
+ "dtype": "float32",
12
+ "eos_token_id": 2,
13
+ "layer_norm_epsilon": 1e-05,
14
+ "model_type": "chess_transformer",
15
+ "n_ctx": 256,
16
+ "n_embd": 128,
17
+ "n_head": 8,
18
+ "n_inner": 361,
19
+ "n_layer": 6,
20
+ "pad_token_id": 0,
21
+ "tie_weights": true,
22
+ "transformers_version": "4.57.6",
23
+ "vocab_size": 68
24
+ }
model.py ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Chess Transformer Model for the Chess Challenge.
3
+
4
+ This module provides a simple GPT-style transformer architecture
5
+ designed to fit within the 1M parameter constraint.
6
+
7
+ Key components:
8
+ - ChessConfig: Configuration class for model hyperparameters
9
+ - ChessForCausalLM: The main model class for next-move prediction
10
+ """
11
+
12
+ from __future__ import annotations
13
+
14
+ import math
15
+ from dataclasses import dataclass
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+ from transformers import PretrainedConfig, PreTrainedModel
22
+ from transformers.modeling_outputs import CausalLMOutputWithPast
23
+
24
+
25
+ class ChessConfig(PretrainedConfig):
26
+ """
27
+ Configuration class for the Chess Transformer model.
28
+
29
+ This configuration is designed for a ~1M parameter model.
30
+ Students can adjust these values to explore different architectures.
31
+
32
+ Parameter budget breakdown (with default values):
33
+ - Embeddings (vocab): 1200 x 128 = 153,600
34
+ - Position Embeddings: 256 x 128 = 32,768
35
+ - Transformer Layers: 6 x ~120,000 = ~720,000
36
+ - LM Head (with weight tying): 0 (shared with embeddings)
37
+ - Total: ~906,000 parameters
38
+
39
+ Attributes:
40
+ vocab_size: Size of the vocabulary (number of unique moves).
41
+ n_embd: Embedding dimension (d_model).
42
+ n_layer: Number of transformer layers.
43
+ n_head: Number of attention heads.
44
+ n_ctx: Maximum sequence length (context window).
45
+ n_inner: Feed-forward inner dimension (default: 3 * n_embd).
46
+ dropout: Dropout probability.
47
+ layer_norm_epsilon: Epsilon for layer normalization.
48
+ tie_weights: Whether to tie embedding and output weights.
49
+ """
50
+
51
+ model_type = "chess_transformer"
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_size: int = 1200,
56
+ n_embd: int = 128,
57
+ n_layer: int = 6,
58
+ n_head: int = 4,
59
+ n_ctx: int = 256,
60
+ n_inner: Optional[int] = None,
61
+ dropout: float = 0.1,
62
+ layer_norm_epsilon: float = 1e-5,
63
+ tie_weights: bool = True,
64
+ pad_token_id: int = 0,
65
+ bos_token_id: int = 1,
66
+ eos_token_id: int = 2,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(
70
+ pad_token_id=pad_token_id,
71
+ bos_token_id=bos_token_id,
72
+ eos_token_id=eos_token_id,
73
+ **kwargs,
74
+ )
75
+
76
+ self.vocab_size = vocab_size
77
+ self.n_embd = n_embd
78
+ self.n_layer = n_layer
79
+ self.n_head = n_head
80
+ self.n_ctx = n_ctx
81
+ self.n_inner = n_inner if n_inner is not None else 3 * n_embd # Reduced from 4x to 3x
82
+ self.dropout = dropout
83
+ self.layer_norm_epsilon = layer_norm_epsilon
84
+ self.tie_weights = tie_weights
85
+ # Inform HF base class about tying behavior
86
+ self.tie_word_embeddings = bool(tie_weights)
87
+
88
+
89
+ class MultiHeadAttention(nn.Module):
90
+ """
91
+ Multi-head self-attention module.
92
+
93
+ This is a standard scaled dot-product attention implementation
94
+ with causal masking for autoregressive generation.
95
+ """
96
+
97
+ def __init__(self, config: ChessConfig):
98
+ super().__init__()
99
+
100
+ assert config.n_embd % config.n_head == 0, \
101
+ f"n_embd ({config.n_embd}) must be divisible by n_head ({config.n_head})"
102
+
103
+ self.n_head = config.n_head
104
+ self.n_embd = config.n_embd
105
+ self.head_dim = config.n_embd // config.n_head
106
+
107
+ # Combined QKV projection for efficiency
108
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
109
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
110
+
111
+ self.dropout = nn.Dropout(config.dropout)
112
+
113
+ # Causal mask (will be created on first forward pass)
114
+ self.register_buffer(
115
+ "bias",
116
+ torch.tril(torch.ones(config.n_ctx, config.n_ctx)).view(
117
+ 1, 1, config.n_ctx, config.n_ctx
118
+ ),
119
+ persistent=False,
120
+ )
121
+
122
+ def forward(
123
+ self,
124
+ x: torch.Tensor,
125
+ attention_mask: Optional[torch.Tensor] = None,
126
+ ) -> torch.Tensor:
127
+ batch_size, seq_len, _ = x.size()
128
+
129
+ # Compute Q, K, V
130
+ qkv = self.c_attn(x)
131
+ q, k, v = qkv.split(self.n_embd, dim=2)
132
+
133
+ # Reshape for multi-head attention
134
+ q = q.view(batch_size, seq_len, self.n_head, self.head_dim).transpose(1, 2)
135
+ k = k.view(batch_size, seq_len, self.n_head, self.head_dim).transpose(1, 2)
136
+ v = v.view(batch_size, seq_len, self.n_head, self.head_dim).transpose(1, 2)
137
+
138
+ # Scaled dot-product attention
139
+ attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
140
+
141
+ # Apply causal mask
142
+ causal_mask = self.bias[:, :, :seq_len, :seq_len]
143
+ attn_weights = attn_weights.masked_fill(causal_mask == 0, float("-inf"))
144
+
145
+ # Apply attention mask (for padding)
146
+ if attention_mask is not None:
147
+ # attention_mask shape: (batch_size, seq_len) -> (batch_size, 1, 1, seq_len)
148
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
149
+ attn_weights = attn_weights.masked_fill(attention_mask == 0, float("-inf"))
150
+
151
+ attn_weights = F.softmax(attn_weights, dim=-1)
152
+ attn_weights = self.dropout(attn_weights)
153
+
154
+ # Apply attention to values
155
+ attn_output = torch.matmul(attn_weights, v)
156
+
157
+ # Reshape back
158
+ attn_output = attn_output.transpose(1, 2).contiguous().view(
159
+ batch_size, seq_len, self.n_embd
160
+ )
161
+
162
+ # Output projection
163
+ attn_output = self.c_proj(attn_output)
164
+
165
+ return attn_output
166
+
167
+
168
+ class FeedForward(nn.Module):
169
+ """
170
+ Feed-forward network (MLP) module.
171
+
172
+ Standard two-layer MLP with GELU activation.
173
+ """
174
+
175
+ def __init__(self, config: ChessConfig):
176
+ super().__init__()
177
+
178
+ self.c_fc = nn.Linear(config.n_embd, config.n_inner)
179
+ self.c_proj = nn.Linear(config.n_inner, config.n_embd)
180
+ self.dropout = nn.Dropout(config.dropout)
181
+
182
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
183
+ x = self.c_fc(x)
184
+ x = F.gelu(x)
185
+ x = self.c_proj(x)
186
+ x = self.dropout(x)
187
+ return x
188
+
189
+
190
+ class TransformerBlock(nn.Module):
191
+ """
192
+ A single transformer block with attention and feed-forward layers.
193
+
194
+ Uses pre-normalization (LayerNorm before attention/FFN) for better
195
+ training stability.
196
+ """
197
+
198
+ def __init__(self, config: ChessConfig):
199
+ super().__init__()
200
+
201
+ self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
202
+ self.attn = MultiHeadAttention(config)
203
+ self.ln_2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
204
+ self.mlp = FeedForward(config)
205
+
206
+ def forward(
207
+ self,
208
+ x: torch.Tensor,
209
+ attention_mask: Optional[torch.Tensor] = None,
210
+ ) -> torch.Tensor:
211
+ # Pre-norm attention
212
+ x = x + self.attn(self.ln_1(x), attention_mask=attention_mask)
213
+ # Pre-norm FFN
214
+ x = x + self.mlp(self.ln_2(x))
215
+ return x
216
+
217
+
218
+ class ChessForCausalLM(PreTrainedModel):
219
+ """
220
+ Chess Transformer for Causal Language Modeling (next-move prediction).
221
+
222
+ This model is designed to predict the next chess move given a sequence
223
+ of previous moves. It uses a GPT-style architecture with:
224
+ - Token embeddings for chess moves
225
+ - Learned positional embeddings
226
+ - Stacked transformer blocks
227
+ - Linear head for next-token prediction
228
+
229
+ The model supports weight tying between the embedding layer and the
230
+ output projection to save parameters.
231
+
232
+ Example:
233
+ >>> config = ChessConfig(vocab_size=1200, n_embd=128, n_layer=6)
234
+ >>> model = ChessForCausalLM(config)
235
+ >>> inputs = {"input_ids": torch.tensor([[1, 42, 87]])}
236
+ >>> outputs = model(**inputs)
237
+ >>> next_move_logits = outputs.logits[:, -1, :]
238
+ """
239
+
240
+ config_class = ChessConfig
241
+ base_model_prefix = "transformer"
242
+ supports_gradient_checkpointing = True
243
+ # Suppress missing-key warning for tied lm_head when loading
244
+ keys_to_ignore_on_load_missing = ["lm_head.weight"]
245
+
246
+ def __init__(self, config: ChessConfig):
247
+ super().__init__(config)
248
+
249
+ # Token and position embeddings
250
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
251
+ self.wpe = nn.Embedding(config.n_ctx, config.n_embd)
252
+
253
+ self.drop = nn.Dropout(config.dropout)
254
+
255
+ # Transformer blocks
256
+ self.h = nn.ModuleList([
257
+ TransformerBlock(config) for _ in range(config.n_layer)
258
+ ])
259
+
260
+ # Final layer norm
261
+ self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
262
+
263
+ # Output head
264
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
265
+
266
+ # Declare tied weights for proper serialization
267
+ if config.tie_weights:
268
+ self._tied_weights_keys = ["lm_head.weight"]
269
+
270
+ # Initialize weights
271
+ self.post_init()
272
+
273
+ # Tie weights if configured
274
+ if config.tie_weights:
275
+ self.tie_weights()
276
+
277
+ def get_input_embeddings(self) -> nn.Module:
278
+ return self.wte
279
+
280
+ def set_input_embeddings(self, new_embeddings: nn.Module):
281
+ self.wte = new_embeddings
282
+ if getattr(self.config, "tie_weights", False):
283
+ self.tie_weights()
284
+
285
+ def get_output_embeddings(self) -> nn.Module:
286
+ return self.lm_head
287
+
288
+ def set_output_embeddings(self, new_embeddings: nn.Module):
289
+ self.lm_head = new_embeddings
290
+
291
+ def tie_weights(self):
292
+ # Use HF helper to tie or clone depending on config
293
+ if getattr(self.config, "tie_weights", False) or getattr(self.config, "tie_word_embeddings", False):
294
+ self._tie_or_clone_weights(self.lm_head, self.wte)
295
+
296
+ def _init_weights(self, module: nn.Module):
297
+ """Initialize weights following GPT-2 style."""
298
+ if isinstance(module, nn.Linear):
299
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
300
+ if module.bias is not None:
301
+ torch.nn.init.zeros_(module.bias)
302
+ elif isinstance(module, nn.Embedding):
303
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
304
+ elif isinstance(module, nn.LayerNorm):
305
+ torch.nn.init.ones_(module.weight)
306
+ torch.nn.init.zeros_(module.bias)
307
+
308
+ def forward(
309
+ self,
310
+ input_ids: torch.LongTensor,
311
+ attention_mask: Optional[torch.Tensor] = None,
312
+ position_ids: Optional[torch.LongTensor] = None,
313
+ labels: Optional[torch.LongTensor] = None,
314
+ return_dict: Optional[bool] = None,
315
+ **kwargs,
316
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
317
+ """
318
+ Forward pass of the model.
319
+
320
+ Args:
321
+ input_ids: Token IDs of shape (batch_size, seq_len).
322
+ attention_mask: Attention mask of shape (batch_size, seq_len).
323
+ position_ids: Position IDs of shape (batch_size, seq_len).
324
+ labels: Labels for language modeling loss.
325
+ return_dict: Whether to return a ModelOutput object.
326
+
327
+ Returns:
328
+ CausalLMOutputWithPast containing loss (if labels provided) and logits.
329
+ """
330
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
331
+
332
+ batch_size, seq_len = input_ids.size()
333
+ device = input_ids.device
334
+
335
+ # Create position IDs if not provided
336
+ if position_ids is None:
337
+ position_ids = torch.arange(seq_len, device=device).unsqueeze(0).expand(batch_size, -1)
338
+
339
+ # Get embeddings
340
+ token_embeds = self.wte(input_ids)
341
+ position_embeds = self.wpe(position_ids)
342
+ hidden_states = self.drop(token_embeds + position_embeds)
343
+
344
+ # Pass through transformer blocks
345
+ for block in self.h:
346
+ hidden_states = block(hidden_states, attention_mask=attention_mask)
347
+
348
+ # Final layer norm
349
+ hidden_states = self.ln_f(hidden_states)
350
+
351
+ # Get logits
352
+ logits = self.lm_head(hidden_states)
353
+
354
+ # Compute loss if labels are provided
355
+ loss = None
356
+ if labels is not None:
357
+ # Shift logits and labels for next-token prediction
358
+ shift_logits = logits[..., :-1, :].contiguous()
359
+ shift_labels = labels[..., 1:].contiguous()
360
+
361
+ # Flatten for cross-entropy
362
+ loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
363
+ # loss_fct = nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
364
+ loss = loss_fct(
365
+ shift_logits.view(-1, shift_logits.size(-1)),
366
+ shift_labels.view(-1),
367
+ )
368
+
369
+ if not return_dict:
370
+ output = (logits,)
371
+ return ((loss,) + output) if loss is not None else output
372
+
373
+ return CausalLMOutputWithPast(
374
+ loss=loss,
375
+ logits=logits,
376
+ past_key_values=None,
377
+ hidden_states=None,
378
+ attentions=None,
379
+ )
380
+
381
+ @torch.no_grad()
382
+ def generate_move(
383
+ self,
384
+ input_ids: torch.LongTensor,
385
+ temperature: float = 1.0,
386
+ top_k: Optional[int] = None,
387
+ top_p: Optional[float] = None,
388
+ ) -> int:
389
+ """
390
+ Generate the next move given a sequence of moves.
391
+
392
+ Args:
393
+ input_ids: Token IDs of shape (1, seq_len).
394
+ temperature: Sampling temperature (1.0 = no change).
395
+ top_k: If set, only sample from top k tokens.
396
+ top_p: If set, use nucleus sampling with this threshold.
397
+
398
+ Returns:
399
+ The token ID of the predicted next move.
400
+ """
401
+ self.eval()
402
+
403
+ # Get logits for the last position
404
+ outputs = self(input_ids)
405
+ logits = outputs.logits[:, -1, :] / temperature
406
+
407
+ # Apply top-k filtering
408
+ if top_k is not None:
409
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
410
+ logits[indices_to_remove] = float("-inf")
411
+
412
+ # Apply top-p (nucleus) filtering
413
+ if top_p is not None:
414
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
415
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
416
+
417
+ # Remove tokens with cumulative probability above the threshold
418
+ sorted_indices_to_remove = cumulative_probs > top_p
419
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
420
+ sorted_indices_to_remove[..., 0] = 0
421
+
422
+ indices_to_remove = sorted_indices_to_remove.scatter(
423
+ dim=-1, index=sorted_indices, src=sorted_indices_to_remove
424
+ )
425
+ logits[indices_to_remove] = float("-inf")
426
+
427
+ # Sample from the distribution
428
+ probs = F.softmax(logits, dim=-1)
429
+ next_token = torch.multinomial(probs, num_samples=1)
430
+
431
+ return next_token.item()
432
+
433
+
434
+ # Register the model with Auto classes for easy loading
435
+ from transformers import AutoConfig, AutoModelForCausalLM
436
+
437
+ AutoConfig.register("chess_transformer", ChessConfig)
438
+ AutoModelForCausalLM.register(ChessConfig, ChessForCausalLM)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e10fdc9de902dec806bafdcc1758d8990a2b9f9c9939af71413b1d9f10eb724d
3
+ size 4000520
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[BOS]",
3
+ "eos_token": "[EOS]",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "[UNK]"
6
+ }
tokenizer.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Optimized Chess Tokenizer using pure UCI notation.
3
+
4
+ This achieves ~84 vocab size by:
5
+ 1. Using only squares (a1-h8) and promotion pieces (q,r,b,n)
6
+ 2. Decomposing moves into from_square, to_square, (optional) promotion
7
+ 3. No piece types, no color, no annotations
8
+ """
9
+
10
+ from __future__ import annotations
11
+
12
+ import json
13
+ import os
14
+ from typing import Dict, List, Optional
15
+
16
+ from transformers import PreTrainedTokenizer
17
+
18
+
19
+ class ChessTokenizer(PreTrainedTokenizer):
20
+
21
+ model_input_names = ["input_ids", "attention_mask"]
22
+ vocab_files_names = {"vocab_file": "vocab.json"}
23
+
24
+ # Special tokens
25
+ PAD_TOKEN = "[PAD]"
26
+ BOS_TOKEN = "[BOS]"
27
+ EOS_TOKEN = "[EOS]"
28
+ UNK_TOKEN = "[UNK]"
29
+
30
+ def __init__(
31
+ self,
32
+ vocab_file: Optional[str] = None,
33
+ vocab: Optional[Dict[str, int]] = None,
34
+ **kwargs,
35
+ ):
36
+ # Initialize special tokens
37
+ self._pad_token = self.PAD_TOKEN
38
+ self._bos_token = self.BOS_TOKEN
39
+ self._eos_token = self.EOS_TOKEN
40
+ self._unk_token = self.UNK_TOKEN
41
+
42
+ # Remove duplicates from kwargs
43
+ kwargs.pop("pad_token", None)
44
+ kwargs.pop("bos_token", None)
45
+ kwargs.pop("eos_token", None)
46
+ kwargs.pop("unk_token", None)
47
+
48
+ # Load or create vocabulary
49
+ if vocab is not None:
50
+ self._vocab = vocab
51
+ elif vocab_file is not None and os.path.exists(vocab_file):
52
+ with open(vocab_file, "r", encoding="utf-8") as f:
53
+ self._vocab = json.load(f)
54
+ else:
55
+ self._vocab = self._create_default_vocab()
56
+
57
+ # Create reverse mapping
58
+ self._ids_to_tokens = {v: k for k, v in self._vocab.items()}
59
+
60
+ super().__init__(
61
+ pad_token=self._pad_token,
62
+ bos_token=self._bos_token,
63
+ eos_token=self._eos_token,
64
+ unk_token=self._unk_token,
65
+ **kwargs,
66
+ )
67
+
68
+ def _create_default_vocab(self) -> Dict[str, int]:
69
+ """
70
+ Create vocabulary with all possible squares and promotion pieces.
71
+ This ensures deterministic vocab size of exactly 72 tokens.
72
+ """
73
+ tokens = [self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN]
74
+
75
+ # All squares a1-h8
76
+ for file in 'abcdefgh':
77
+ for rank in '12345678':
78
+ tokens.append(f"{file}{rank}")
79
+
80
+ # Promotion pieces (lowercase for UCI)
81
+ tokens.extend(['q', 'r', 'b', 'n'])
82
+
83
+ vocab = {token: idx for idx, token in enumerate(tokens)}
84
+ return vocab
85
+
86
+ @classmethod
87
+ def build_vocab_from_dataset(
88
+ cls,
89
+ dataset_name: str = "dlouapre/lichess_2025-01_1M",
90
+ split: str = "train",
91
+ column: str = "text",
92
+ min_frequency: int = 1,
93
+ max_samples: Optional[int] = 100000,
94
+ ) -> "ChessTokenizer":
95
+ """
96
+ Build tokenizer from dataset by converting to UCI format.
97
+
98
+ This will create a vocabulary of ~72-84 tokens.
99
+ """
100
+ from datasets import load_dataset
101
+ from collections import Counter
102
+
103
+ dataset = load_dataset(dataset_name, split=split)
104
+
105
+ if max_samples is not None:
106
+ dataset = dataset.select(range(min(max_samples, len(dataset))))
107
+
108
+ token_counts = Counter()
109
+
110
+ # Process games and extract UCI components
111
+ for example in dataset:
112
+ moves = example[column].strip().split()
113
+ for move in moves:
114
+ # Convert extended UCI to decomposed UCI
115
+ uci_tokens = cls._extended_to_uci_tokens(move)
116
+ token_counts.update(uci_tokens)
117
+
118
+ # Filter by frequency
119
+ tokens = [
120
+ token for token, count in token_counts.items()
121
+ if count >= min_frequency
122
+ ]
123
+
124
+ # Sort for reproducibility
125
+ tokens = sorted(set(tokens))
126
+
127
+ # Build vocabulary
128
+ special_tokens = [cls.PAD_TOKEN, cls.BOS_TOKEN, cls.EOS_TOKEN, cls.UNK_TOKEN]
129
+ vocab = {token: idx for idx, token in enumerate(special_tokens + tokens)}
130
+
131
+ return cls(vocab=vocab)
132
+
133
+ @staticmethod
134
+ def _extended_to_uci_tokens(move: str) -> List[str]:
135
+ """
136
+ Convert extended UCI format to decomposed UCI tokens.
137
+
138
+ Input: "WPe2e4" or "BQd8h4(x+)" or "WPe7e8=Q"
139
+ Output: ["e2", "e4"] or ["d8", "h4"] or ["e7", "e8", "q"]
140
+ """
141
+ if len(move) < 6:
142
+ return []
143
+
144
+ # Extract squares (positions 2-6)
145
+ from_sq = move[2:4]
146
+ to_sq = move[4:6]
147
+
148
+ tokens = [from_sq, to_sq]
149
+
150
+ # Check for promotion
151
+ if "=" in move:
152
+ promo_idx = move.index("=")
153
+ if promo_idx + 1 < len(move):
154
+ promo = move[promo_idx + 1].lower()
155
+ if promo in 'qrbn':
156
+ tokens.append(promo)
157
+
158
+ return tokens
159
+
160
+ @property
161
+ def vocab_size(self) -> int:
162
+ return len(self._vocab)
163
+
164
+ def get_vocab(self) -> Dict[str, int]:
165
+ return dict(self._vocab)
166
+
167
+ def _tokenize(self, text: str) -> List[str]:
168
+ """
169
+ Tokenize a string of moves.
170
+
171
+ Input can be either:
172
+ - Extended UCI: "WPe2e4 BPe7e5"
173
+ - Decomposed UCI: "e2 e4 e7 e5"
174
+ """
175
+ tokens = text.strip().split()
176
+
177
+ # If tokens look like extended UCI (start with W/B and piece letter)
178
+ # convert them to decomposed format
179
+ result = []
180
+ for token in tokens:
181
+ if len(token) >= 6 and token[0] in 'WB' and token[1] in 'PNBRQK':
182
+ # Extended format - decompose it
183
+ result.extend(self._extended_to_uci_tokens(token))
184
+ else:
185
+ # Already in simple format or is a square/promotion
186
+ result.append(token)
187
+
188
+ return result
189
+
190
+ def _convert_token_to_id(self, token: str) -> int:
191
+ return self._vocab.get(token, self._vocab.get(self.UNK_TOKEN, 0))
192
+
193
+ def _convert_id_to_token(self, index: int) -> str:
194
+ return self._ids_to_tokens.get(index, self.UNK_TOKEN)
195
+
196
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
197
+ """Convert tokens back to string (space-separated)."""
198
+ special = {self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN}
199
+ return " ".join(t for t in tokens if t not in special)
200
+
201
+ def save_vocabulary(
202
+ self,
203
+ save_directory: str,
204
+ filename_prefix: Optional[str] = None,
205
+ ) -> tuple:
206
+ if not os.path.isdir(save_directory):
207
+ os.makedirs(save_directory, exist_ok=True)
208
+
209
+ vocab_file = os.path.join(
210
+ save_directory,
211
+ (filename_prefix + "-" if filename_prefix else "") + "vocab.json",
212
+ )
213
+
214
+ with open(vocab_file, "w", encoding="utf-8") as f:
215
+ json.dump(self._vocab, f, ensure_ascii=False, indent=2)
216
+
217
+ return (vocab_file,)
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[BOS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[EOS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "auto_map": {
37
+ "AutoTokenizer": [
38
+ "tokenizer.ChessTokenizer",
39
+ null
40
+ ]
41
+ },
42
+ "bos_token": "[BOS]",
43
+ "clean_up_tokenization_spaces": false,
44
+ "eos_token": "[EOS]",
45
+ "extra_special_tokens": {},
46
+ "model_max_length": 1000000000000000019884624838656,
47
+ "pad_token": "[PAD]",
48
+ "tokenizer_class": "ChessTokenizer",
49
+ "unk_token": "[UNK]"
50
+ }
vocab.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "[PAD]": 0,
3
+ "[BOS]": 1,
4
+ "[EOS]": 2,
5
+ "[UNK]": 3,
6
+ "a1": 4,
7
+ "a2": 5,
8
+ "a3": 6,
9
+ "a4": 7,
10
+ "a5": 8,
11
+ "a6": 9,
12
+ "a7": 10,
13
+ "a8": 11,
14
+ "b1": 12,
15
+ "b2": 13,
16
+ "b3": 14,
17
+ "b4": 15,
18
+ "b5": 16,
19
+ "b6": 17,
20
+ "b7": 18,
21
+ "b8": 19,
22
+ "c1": 20,
23
+ "c2": 21,
24
+ "c3": 22,
25
+ "c4": 23,
26
+ "c5": 24,
27
+ "c6": 25,
28
+ "c7": 26,
29
+ "c8": 27,
30
+ "d1": 28,
31
+ "d2": 29,
32
+ "d3": 30,
33
+ "d4": 31,
34
+ "d5": 32,
35
+ "d6": 33,
36
+ "d7": 34,
37
+ "d8": 35,
38
+ "e1": 36,
39
+ "e2": 37,
40
+ "e3": 38,
41
+ "e4": 39,
42
+ "e5": 40,
43
+ "e6": 41,
44
+ "e7": 42,
45
+ "e8": 43,
46
+ "f1": 44,
47
+ "f2": 45,
48
+ "f3": 46,
49
+ "f4": 47,
50
+ "f5": 48,
51
+ "f6": 49,
52
+ "f7": 50,
53
+ "f8": 51,
54
+ "g1": 52,
55
+ "g2": 53,
56
+ "g3": 54,
57
+ "g4": 55,
58
+ "g5": 56,
59
+ "g6": 57,
60
+ "g7": 58,
61
+ "g8": 59,
62
+ "h1": 60,
63
+ "h2": 61,
64
+ "h3": 62,
65
+ "h4": 63,
66
+ "h5": 64,
67
+ "h6": 65,
68
+ "h7": 66,
69
+ "h8": 67
70
+ }