File size: 16,176 Bytes
0dce87a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import typing as t
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from tracemalloc import start
import cv2
import numpy as np
import rpack
from openslide import OpenSlide
from PIL import Image
from scipy.ndimage import binary_fill_holes
from skimage import filters
from skimage.morphology import remove_small_objects
if t.TYPE_CHECKING:
from _typeshed import StrPath
try:
from skimage import img_as_ubyte # type: ignore
except:
from skimage.util import img_as_ubyte # type: ignore
def find_contours(arr: np.ndarray, only_outer: bool = True, convex: bool = False):
"""Find contours in a binary image
Parameters
----------
arr : np.ndarray
Binary image
only_outer : bool
If True, only find external contours
convex : bool
If True, return convex hull of contours
Returns
-------
contours : list
List of contours
"""
mode = cv2.RETR_EXTERNAL if only_outer else cv2.RETR_LIST
cresults = cv2.findContours(arr.astype(np.uint8), mode, cv2.CHAIN_APPROX_SIMPLE)
contours = cresults[1] if len(cresults) == 3 else cresults[0]
contours = list(contours) if isinstance(contours, tuple) else contours
if convex:
contours = [cv2.convexHull(cnt) for cnt in contours]
return contours
def merge_overlapping_bboxes(bboxes: list):
"""Merge overlapping bounding boxes
Parameters
----------
bboxes : list
List of bounding boxes in format (x, y, width, height)
"""
candidate_count = 0
while candidate_count < len(bboxes):
candidate_count += 1
overlap = False
candidate_box = bboxes.pop(0)
for index, compare_box in enumerate(bboxes):
overlapping, new_bbox = merge_if_overlapping(candidate_box, compare_box)
if overlapping:
overlap = True
candidate_count = 0
bboxes.pop(index)
bboxes.append(new_bbox)
break
if not overlap:
bboxes.append(candidate_box)
def merge_if_overlapping(a: tuple, b: tuple):
"""Check if two bounding boxes overlap and merge them if they do
Parameters
----------
a : tuple
First bounding box in format (x, y, width, height)
b : tuple
Second bounding box in format (x, y, width, height)
Returns
-------
overlapping : bool
True if boxes overlap
new_bbox : tuple
Merged bounding box if overlapping, empty list otherwise
"""
bottom = np.max([a[0], b[0]])
top = np.min([a[0] + a[2], b[0] + b[2]])
left = np.max([a[1], b[1]])
right = np.min([a[1] + a[3], b[1] + b[3]])
do_intersect = bottom < top and left < right
if do_intersect:
x_min = np.min([a[1], b[1]])
y_min = np.min([a[0], b[0]])
x_max = np.max([a[1] + a[3], b[1] + b[3]])
y_max = np.max([a[0] + a[2], b[0] + b[2]])
new_bbox = (y_min, x_min, y_max - y_min, x_max - x_min)
return True, new_bbox
return False, []
def load_slide_img(
wsi,
level: int = 0,
) -> np.ndarray:
"""Load slide image with specific level
Parameters
----------
wsi : CuImage
The CuImage object
level : int
Slide level to load
Returns
-------
slide_img : np.ndarray
Numpy array with RGB channels
"""
slide_img = np.asarray(wsi.read_region(level=level, device="gpu", num_workers=32))
if slide_img.shape[2] == 4:
slide_img = slide_img[:, :, :-1]
return slide_img
def rgb2gray(img):
"""Convert RGB image to grayscale
Parameters
----------
img : np.ndarray
RGB image with 3 channels
Returns
-------
gray : np.ndarray
Grayscale image
"""
return np.dot(img, [0.299, 0.587, 0.114])
def thresh_slide(gray, thresh_val, sigma=13):
"""Threshold gray image to binary image
Parameters
----------
gray : np.ndarray
2D grayscale image
thresh_val : float
Thresholding value
sigma : int
Gaussian smoothing sigma
Returns
-------
bw_img : np.ndarray
Binary image
"""
smooth = filters.gaussian(gray, sigma=sigma)
smooth /= np.amax(smooth)
bw_img = smooth < thresh_val
return bw_img
def get_tissue_bboxes(
mask: np.ndarray, wsi_width: int, wsi_height: int, min_tissue_size: int = 10000
):
scale = wsi_height / mask.shape[0]
contours = find_contours(mask)
areas = []
for cnt in contours:
area = cv2.contourArea(cnt)
areas.append(area)
large_contours = []
large_areas = []
for i, cnt in enumerate(contours):
area_mm = areas[i]
if area_mm >= min_tissue_size:
large_contours.append(cnt)
large_areas.append(area_mm)
areas = large_areas
boxes = [cv2.boundingRect(c) for c in large_contours]
return (
[cv2.boundingRect(c) for c in large_contours]
if boxes
else [[0, 0, wsi_width, wsi_height]]
)
def get_tissue_positions_and_packed_size(
boxes,
wsi_width: int,
wsi_height: int,
scale: float,
) -> tuple[list[tuple[int, int]], tuple[int, int]]:
if len(boxes) > 1:
merge_overlapping_bboxes(boxes)
boxes = np.array(boxes, dtype=np.float32) * scale
if len(boxes.shape) == 1:
boxes = boxes[None]
boxes[:, :2] = np.floor(boxes[:, :2])
boxes[:, 0] = np.clip(boxes[:, 0], 0, wsi_width - 1)
boxes[:, 1] = np.clip(boxes[:, 1], 0, wsi_height - 1)
boxes[:, 2:] = np.ceil(boxes[:, 2:])
boxes[:, 2] = np.clip(boxes[:, 2], 0, wsi_width - boxes[:, 0])
boxes[:, 3] = np.clip(boxes[:, 3], 0, wsi_height - boxes[:, 1])
boxes = boxes.astype(np.int32)
box_sizes = [(int(box[2]), int(box[3])) for box in boxes]
positions = rpack.pack(box_sizes) # at processing spacing
packed_size: tuple[int, int] = rpack.bbox_size(
box_sizes, positions
) # width, height
counter = 0
for sdf in np.arange(0.5, 0.96, 0.05):
# asymmetry_factor = min(packed_size)/max(packed_size)
# if asymmetry_factor < sdf:
rparams = {
"max_height": int(max(packed_size) * sdf),
"max_width": int(max(packed_size) * sdf),
}
try:
positions = rpack.pack(box_sizes, **rparams) # at processing spacing
packed_size: tuple[int, int] = rpack.bbox_size(box_sizes, positions)
break
except rpack.PackingImpossibleError as ex:
counter += 1
return positions, (int(packed_size[0]), int(packed_size[1]))
def pack_slide(
wsi_arr: np.ndarray,
mask: np.ndarray,
min_tissue_size: int = 10000,
):
H, W = wsi_arr.shape[:2]
boxes = get_tissue_bboxes(mask, W, H, min_tissue_size=min_tissue_size)
if len(boxes) > 0:
positions, packed_size = get_tissue_positions_and_packed_size(
boxes, W, H, H / mask.shape[0]
)
img_out = np.full(
(packed_size[1], packed_size[0]) + wsi_arr.shape[2:],
255,
dtype=wsi_arr.dtype,
)
mask_out = np.zeros((packed_size[1], packed_size[0]), dtype=np.bool)
for i, pos in enumerate(positions):
box = boxes[i]
img_out[pos[1] : pos[1] + box[3], pos[0] : pos[0] + box[2]] = wsi_arr[
box[1] : box[1] + box[3], box[0] : box[0] + box[2]
]
mask_out[pos[1] : pos[1] + box[3], pos[0] : pos[0] + box[2]] = mask[
box[1] : box[1] + box[3], box[0] : box[0] + box[2]
]
else:
img_out = wsi_arr
mask_out = mask
return img_out, mask_out
def get_level_downsamples(wsi: OpenSlide):
level_downsamples = []
dim_0 = wsi.level_dimensions[0]
for downsample, dim in zip(wsi.level_downsamples, wsi.level_dimensions):
estimated_downsample = (dim_0[0] / float(dim[0]), dim_0[1] / float(dim[1]))
(
level_downsamples.append(estimated_downsample)
if estimated_downsample != (downsample, downsample)
else level_downsamples.append((downsample, downsample))
)
return level_downsamples
def segment_tissue(
wsi_path: Path,
seg_level=-1,
sthresh=8,
sthresh_up=255,
mthresh=7,
close=4,
filter_params={"a_t": 1, "a_h": 1, "max_n_holes": 100},
ref_patch_size=512,
):
"""
Segment the tissue via HSV -> Median thresholding -> Binary threshold
"""
def _filter_contours(contours, hierarchy, filter_params):
"""
Filter contours by: area.
"""
filtered = []
# find indices of foreground contours (parent == -1)
hierarchy_1 = np.flatnonzero(hierarchy[:, 1] == -1)
all_holes = []
# loop through foreground contour indices
for cont_idx in hierarchy_1:
# actual contour
cont = contours[cont_idx]
# indices of holes contained in this contour (children of parent contour)
holes = np.flatnonzero(hierarchy[:, 1] == cont_idx)
# take contour area (includes holes)
a = cv2.contourArea(cont)
# calculate the contour area of each hole
hole_areas = [cv2.contourArea(contours[hole_idx]) for hole_idx in holes]
# actual area of foreground contour region
a = a - np.array(hole_areas).sum()
if a == 0:
continue
if tuple((filter_params["a_t"],)) < tuple((a,)):
filtered.append(cont_idx)
all_holes.append(holes)
foreground_contours = [contours[cont_idx] for cont_idx in filtered]
hole_contours = []
for hole_ids in all_holes:
unfiltered_holes = [contours[idx] for idx in hole_ids]
unfilered_holes = sorted(
unfiltered_holes, key=cv2.contourArea, reverse=True
)
# take max_n_holes largest holes by area
unfilered_holes = unfilered_holes[: filter_params["max_n_holes"]]
filtered_holes = []
# filter these holes
for hole in unfilered_holes:
if cv2.contourArea(hole) > filter_params["a_h"]:
filtered_holes.append(hole)
hole_contours.append(filtered_holes)
return foreground_contours, hole_contours
def draw_white_bands(img: np.ndarray, thickness: int):
height, width = img.shape[:2]
white = [255, 255, 255] # ํฐ์ (B, G, R)
# cv2.copyMakeBorder ํจ์๋ฅผ ์ฌ์ฉํด ํฐ์ ๋ ๋ฅผ ์ถ๊ฐ
# ๋๊ป 30ํฝ์
์ ์์ชฝ ํฐ์ ๋ ๊ทธ๋ฆฌ๊ธฐ
cv2.rectangle(img, (0, 0), (width, thickness), white, -1)
# ๋๊ป 30ํฝ์
์ ์๋์ชฝ ํฐ์ ๋ ๊ทธ๋ฆฌ๊ธฐ
cv2.rectangle(img, (0, height - thickness), (width, height), white, -1)
# ๋๊ป 30ํฝ์
์ ์ผ์ชฝ ํฐ์ ๋ ๊ทธ๋ฆฌ๊ธฐ
cv2.rectangle(img, (0, 0), (thickness, height), white, -1)
# ๋๊ป 30ํฝ์
์ ์ค๋ฅธ์ชฝ ํฐ์ ๋ ๊ทธ๋ฆฌ๊ธฐ
cv2.rectangle(img, (width - thickness, 0), (width, height), white, -1)
with OpenSlide(str(wsi_path)) as wsi:
if seg_level < 0:
seg_level = wsi.get_best_level_for_downsample(64)
img = np.asarray(
wsi.read_region(
location=(0, 0), level=seg_level, size=wsi.level_dimensions[seg_level]
)
)
img_rgb = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
draw_white_bands(img_rgb, thickness=20)
img_gray = cv2.cvtColor(img, cv2.COLOR_RGBA2GRAY)
H, W = img_rgb.shape[:2]
B_8, G_8, R_8 = cv2.split(img_rgb)
B = B_8.astype(np.int32)
G = G_8.astype(np.int32)
R = R_8.astype(np.int32)
mask = (R >= 0) & (R <= 110) & (G >= 0) & (G <= 110) & (B >= 0) & (B <= 110)
color_difference1 = np.abs((R) - (G)) <= 15
color_difference2 = np.abs((G) - (B)) <= 15
color_difference3 = np.abs((R) - (B)) <= 15
color_difference = color_difference1 & color_difference2 & color_difference3
final_mask = mask & color_difference
laplacian = cv2.Laplacian(img_gray, cv2.CV_64F)
laplacian_abs = cv2.convertScaleAbs(laplacian)
mask = laplacian_abs <= 15
img_rgb[mask] = [255, 255, 255]
img_hsv = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV) # Convert to HSV space
img_med = cv2.medianBlur(
img_hsv[:, :, 1], mthresh
) # Apply median blurring #same to median filter
# Thresholding
_, img_thresh = cv2.threshold(img_med, sthresh, sthresh_up, cv2.THRESH_BINARY)
# Morphological closing
if close > 0:
kernel = np.ones((close, close), np.uint8)
img_thresh = cv2.morphologyEx(img_thresh, cv2.MORPH_CLOSE, kernel)
# before k-medicon
scale = get_level_downsamples(wsi)[seg_level]
scaled_ref_patch_area = int(ref_patch_size**2 / (scale[0] * scale[1]))
filter_params = filter_params.copy()
filter_params["a_t"] = filter_params["a_t"] * scaled_ref_patch_area
filter_params["a_h"] = filter_params["a_h"] * scaled_ref_patch_area
# Find and filter contours
contours, hierarchy = cv2.findContours(
img_thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE
)
hierarchy = np.squeeze(hierarchy, axis=(0,))[:, 2:]
foreground_contours, hole_contours = _filter_contours(
contours, hierarchy, filter_params
) # Necessary for filtering out artifacts
mask = np.zeros(img_rgb.shape[:2], dtype=np.uint8)
for i, cont in enumerate(foreground_contours):
if cont is None or len(cont) == 0:
print(f"Warning: Empty contour at index {i}")
continue
if (
cont[:, :, 0].max() >= W
or cont[:, :, 1].max() >= H
or cont[:, :, 0].min() < 0
or cont[:, :, 1].min() < 0
):
print(f"Warning: Contour {i} coordinates out of bounds!")
continue
# Fill the main tissue contour
cv2.fillPoly(mask, [cont], 255) # type: ignore
# Remove holes if they exist
if i < len(hole_contours) and hole_contours[i]:
for hole in hole_contours[i]: # type: ignore
cv2.fillPoly(mask, [hole], 0) # type: ignore
mask = mask.astype(np.bool)
if not mask.any():
mask[:, :] = True # If no mask, return full mask
return mask, img_rgb
def get_mask_path_by_wsi_path(wsi_path: Path, wsi_dir: Path, mask_dir: Path) -> Path:
wsi_path, wsi_dir, mask_dir = (
wsi_path.absolute(),
wsi_dir.absolute(),
mask_dir.absolute(),
)
rel_path = wsi_path.relative_to(wsi_dir)
stitch_path_prefix = mask_dir / rel_path
stitch_path_prefix = stitch_path_prefix.parent / rel_path.stem
extensions = ["jpg", "jpeg", "png", "webp"]
extensions += [ext.upper() for ext in extensions]
stitch_paths = [
stitch_path_prefix.parent / (rel_path.stem + f".{ext}") for ext in extensions
]
stitch_paths += [
stitch_path_prefix.parent / rel_path.stem / (rel_path.stem + f".{ext}")
for ext in extensions
]
ret = None
for stitch_path in stitch_paths:
if stitch_path.exists():
ret = stitch_path
if ret is None:
raise FileNotFoundError(
f"No mask for wsi '{wsi_path}' in mask dir '{mask_dir}' (candidates: {', '.join([str(p) for p in stitch_paths])})"
)
return ret
def read_mask(mask_path: Path) -> np.ndarray:
img = Image.open(mask_path)
w, h = img.size
return np.asarray(img).reshape((h, w, -1)).max(-1) > 0
def read_mask_by_wsi_path(wsi_path: Path, wsi_dir: Path, mask_dir: Path) -> np.ndarray:
wsi_path, wsi_dir, mask_dir = (
wsi_path.absolute(),
wsi_dir.absolute(),
mask_dir.absolute(),
)
mask_path = get_mask_path_by_wsi_path(wsi_path, wsi_dir, mask_dir)
return read_mask(mask_path)
|