|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5_recommendation_sports_equipment_english |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5_recommendation_sports_equipment_english |
|
|
|
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4554 |
|
- Rouge1: 55.5556 |
|
- Rouge2: 47.6190 |
|
- Rougel: 55.9524 |
|
- Rougelsum: 55.5556 |
|
- Gen Len: 3.9048 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 0.96 | 6 | 6.7375 | 8.7145 | 0.9524 | 8.7598 | 8.5557 | 19.0 | |
|
| No log | 1.96 | 12 | 2.8089 | 23.3333 | 9.5238 | 23.3333 | 23.3333 | 3.1429 | |
|
| No log | 2.96 | 18 | 0.9394 | 9.5238 | 4.7619 | 9.5238 | 9.5238 | 3.1905 | |
|
| No log | 3.96 | 24 | 0.6679 | 32.6190 | 14.2857 | 33.3333 | 32.0635 | 3.5714 | |
|
| No log | 4.96 | 30 | 0.6736 | 25.2381 | 9.5238 | 25.3175 | 25.5556 | 4.2381 | |
|
| No log | 5.96 | 36 | 0.6658 | 37.6190 | 23.8095 | 38.4127 | 37.9365 | 4.0476 | |
|
| No log | 6.96 | 42 | 0.6460 | 45.5556 | 33.3333 | 46.6667 | 45.2381 | 3.8571 | |
|
| No log | 7.96 | 48 | 0.5596 | 50.7937 | 42.8571 | 52.3810 | 50.7937 | 4.0 | |
|
| No log | 8.96 | 54 | 0.5082 | 55.5556 | 47.6190 | 55.9524 | 55.5556 | 3.9524 | |
|
| No log | 9.96 | 60 | 0.4554 | 55.5556 | 47.6190 | 55.9524 | 55.5556 | 3.9048 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.3 |
|
|