File size: 10,504 Bytes
56c4b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A programs database that implements the evolutionary algorithm."""
from collections.abc import Mapping, Sequence
import copy
import dataclasses
import time
from typing import Any
import numpy as np
import scipy
Signature = tuple[float, ...]
ScoresPerTest = Mapping[Any, float]
def _softmax(logits: np.ndarray, temperature: float) -> np.ndarray:
"""Returns the tempered softmax of 1D finite `logits`."""
if not np.all(np.isfinite(logits)):
non_finites = set(logits[~np.isfinite(logits)])
raise ValueError(f'`logits` contains non-finite value(s): {non_finites}')
if not np.issubdtype(logits.dtype, np.floating):
logits = np.array(logits, dtype=np.float32)
result = scipy.special.softmax(logits / temperature, axis=-1)
# Ensure that probabilities sum to 1 to prevent error in `np.random.choice`.
index = np.argmax(result)
result[index] = 1 - np.sum(result[0:index]) - np.sum(result[index+1:])
return result
def _reduce_score(scores_per_test: ScoresPerTest) -> float:
"""Reduces per-test scores into a single score."""
return scores_per_test[list(scores_per_test.keys())[-1]]
def _get_signature(scores_per_test: ScoresPerTest) -> Signature:
"""Represents test scores as a canonical signature."""
return tuple(scores_per_test[k] for k in sorted(scores_per_test.keys()))
@dataclasses.dataclass(frozen=True)
class Prompt:
"""A prompt produced by the ProgramsDatabase, to be sent to Samplers.
Attributes:
code: The prompt, ending with the header of the function to be completed.
version_generated: The function to be completed is `_v{version_generated}`.
island_id: Identifier of the island that produced the implementations
included in the prompt. Used to direct the newly generated implementation
into the same island.
"""
code: str
version_generated: int
island_id: int
@dataclasses.dataclass(frozen=True)
class ProgramsDatabaseConfig:
"""Configuration of a ProgramsDatabase.
Attributes:
functions_per_prompt: Number of previous programs to include in prompts.
num_islands: Number of islands to maintain as a diversity mechanism.
reset_period: How often (in seconds) the weakest islands should be reset.
cluster_sampling_temperature_init: Initial temperature for softmax sampling
of clusters within an island.
cluster_sampling_temperature_period: Period of linear decay of the cluster
sampling temperature.
"""
functions_per_prompt: int = 2
num_islands: int = 4
reset_period: int = 60 * 60
cluster_sampling_temperature_init: float = 0.1
cluster_sampling_temperature_period: int = 5
class ProgramsDatabase:
"""A collection of programs, organized as islands."""
def __init__(
self,
config: ProgramsDatabaseConfig,
) -> None:
self._config: ProgramsDatabaseConfig = config
# Initialize empty islands.
self._islands: list[Island] = []
for _ in range(config.num_islands):
self._islands.append(
Island(config.functions_per_prompt,
config.cluster_sampling_temperature_init,
config.cluster_sampling_temperature_period))
self._best_score_per_island: list[float] = (
[-float('inf')] * config.num_islands)
self._best_program_per_island: list[int | None] = (
[None] * config.num_islands)
self._best_scores_per_test_per_island: list[ScoresPerTest | None] = (
[None] * config.num_islands)
self._last_reset_time: float = time.time()
def get_seed(self) -> list[int]:
"""Returns a prompt containing implementations from one chosen island."""
island_id = np.random.randint(len(self._islands))
seed_ids = self._islands[island_id].get_seed()
return island_id, seed_ids
def _register_program_in_island(
self,
program: int,
program_len: int,
island_id: int,
scores_per_test: ScoresPerTest,
) -> None:
"""Registers `program` in the specified island."""
self._islands[island_id].register_program(program, program_len, scores_per_test)
score = _reduce_score(scores_per_test)
if score > self._best_score_per_island[island_id]:
self._best_program_per_island[island_id] = program
self._best_scores_per_test_per_island[island_id] = scores_per_test
self._best_score_per_island[island_id] = score
def register_program(
self,
program: int,
program_len: int,
island_id: int | None,
scores_per_test: ScoresPerTest,
) -> None:
"""Registers `program` in the database."""
# In an asynchronous implementation we should consider the possibility of
# registering a program on an island that had been reset after the prompt
# was generated. Leaving that out here for simplicity.
if island_id is None:
# This is a program added at the beginning, so adding it to all islands.
for island_id in range(len(self._islands)):
self._register_program_in_island(program, program_len, island_id, scores_per_test)
else:
self._register_program_in_island(program, program_len, island_id, scores_per_test)
# Check whether it is time to reset an island.
if (time.time() - self._last_reset_time > self._config.reset_period):
self._last_reset_time = time.time()
self.reset_islands()
def reset_islands(self) -> None:
"""Resets the weaker half of islands."""
# We sort best scores after adding minor noise to break ties.
indices_sorted_by_score: np.ndarray = np.argsort(
self._best_score_per_island +
np.random.randn(len(self._best_score_per_island)) * 1e-6)
num_islands_to_reset = self._config.num_islands // 2
reset_islands_ids = indices_sorted_by_score[:num_islands_to_reset]
keep_islands_ids = indices_sorted_by_score[num_islands_to_reset:]
for island_id in reset_islands_ids:
self._islands[island_id] = Island(
self._template,
self._function_to_evolve,
self._config.functions_per_prompt,
self._config.cluster_sampling_temperature_init,
self._config.cluster_sampling_temperature_period)
self._best_score_per_island[island_id] = -float('inf')
founder_island_id = np.random.choice(keep_islands_ids)
founder = self._best_program_per_island[founder_island_id]
founder_scores = self._best_scores_per_test_per_island[founder_island_id]
self._register_program_in_island(founder, island_id, founder_scores)
class Island:
"""A sub-population of the programs database."""
def __init__(
self,
functions_per_prompt: int,
cluster_sampling_temperature_init: float,
cluster_sampling_temperature_period: int,
) -> None:
self._functions_per_prompt: int = functions_per_prompt
self._cluster_sampling_temperature_init = cluster_sampling_temperature_init
self._cluster_sampling_temperature_period = (
cluster_sampling_temperature_period)
self._clusters: dict[Signature, Cluster] = {}
self._num_programs: int = 0
def register_program(
self,
program: int,
program_len: int,
scores_per_test: ScoresPerTest,
) -> None:
"""Stores a program on this island, in its appropriate cluster."""
signature = _get_signature(scores_per_test)
if signature not in self._clusters:
score = _reduce_score(scores_per_test)
self._clusters[signature] = Cluster(score, [program], [program_len])
else:
self._clusters[signature].register_program(program, program_len)
self._num_programs += 1
def get_seed(self) -> tuple[str, int]:
"""Constructs a prompt containing functions from this island."""
signatures = list(self._clusters.keys())
cluster_scores = np.array(
[self._clusters[signature].score for signature in signatures])
# Convert scores to probabilities using softmax with temperature schedule.
period = self._cluster_sampling_temperature_period
temperature = self._cluster_sampling_temperature_init * (
1 - (self._num_programs % period) / period)
probabilities = _softmax(cluster_scores, temperature)
# At the beginning of an experiment when we have few clusters, place fewer
# programs into the prompt.
functions_per_prompt = min(len(self._clusters), self._functions_per_prompt)
idx = np.random.choice(
len(signatures), size=functions_per_prompt, p=probabilities)
chosen_signatures = [signatures[i] for i in idx]
implementations = []
scores = []
for signature in chosen_signatures:
cluster = self._clusters[signature]
implementations.append(cluster.sample_program())
scores.append(cluster.score)
indices = np.argsort(scores)
sorted_implementations = [implementations[i] for i in indices]
return sorted_implementations
class Cluster:
"""A cluster of programs on the same island and with the same Signature."""
def __init__(self, score: float, init_programs: list[int], init_program_lengths: list[int]) -> None:
self._score = score
# We store the indices of the programs in the cluster
self._programs: list[int] = init_programs
self._lengths: list[int] = init_program_lengths
@property
def score(self) -> float:
"""Reduced score of the signature that this cluster represents."""
return self._score
def register_program(self, program_idx: int, program_length: int) -> None:
"""Adds `program` to the cluster."""
self._programs.append(program_idx)
self._lengths.append(program_length)
def sample_program(self) -> int:
"""Samples a program, giving higher probability to shorther programs."""
normalized_lengths = (np.array(self._lengths) - min(self._lengths)) / (
max(self._lengths) + 1e-6)
probabilities = _softmax(-normalized_lengths, temperature=1.0)
return np.random.choice(self._programs, p=probabilities) |