File size: 15,147 Bytes
56c4b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import json
import math
import os
import re
import shutil
import signal
import subprocess
import time


from llm_api import generate_response
from prompt_files import general_prompt, pde_descriptions


def file_to_string(file_path):
    with open(file_path) as f:
        string = ''.join(f.readlines())
    return string


def get_last_line(output_file):
    with open(output_file, 'r') as f:
        lines = f.readlines()
    result_line = lines[-1]
    return result_line


def generate_pde_description(cfg, pde_name):
    if pde_name == 'advection':
        pde_description = pde_descriptions.advection_description.format(advection_beta=cfg.pde.beta)
    elif pde_name == 'burgers':
        pde_description = pde_descriptions.burgers_description.format(burgers_nu=cfg.pde.nu)
    elif pde_name == 'reacdiff1d':
        pde_description = pde_descriptions.reacdiff_1d_description.format(reacdiff1d_nu=cfg.pde.nu,
            reacdiff1d_rho=cfg.pde.rho)
    elif pde_name == 'cns1d':
        pde_description = pde_descriptions.cns1d_description.format(cns1d_eta=cfg.pde.eta)
    elif pde_name == 'darcy':
        pde_description = pde_descriptions.darcy_description.format()
    elif pde_name == 'ins2d':
        pde_description = pde_descriptions.ins2d_description.format()
    else:
        raise ValueError(f'PDE {pde_name} not recognized')
    return pde_description


def generate_initial_prompt_without_seed(cfg, pde_name):
    system_prompt = general_prompt.system_prompt
    pde_description = generate_pde_description(cfg, pde_name)
    
    solver_template = file_to_string(f'solvers/{pde_name}/solver_template.py')

    problem = general_prompt.code_generation_without_seed_prompt.format(
        pde_description=pde_description,
        solver_template=solver_template
    )

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": problem}
    ]
    return messages 


def generate_initial_prompt(
    cfg,
    seed_implementations:list,
    working_folder: str,
    pde_name:str = 'burgers'
):
    system_prompt = general_prompt.system_prompt

    pde_description = generate_pde_description(cfg, pde_name)

    if cfg.method.name == 'funsearch':
        seed_folder = working_folder
    else:
        # cfg.method.name == 'refine'
        seed_folder = os.path.join('solvers', pde_name, cfg.pde.pde_setting_name, 'seeds')
    examples = [
        general_prompt.code_sample.format(
            id=example_id,
            code=file_to_string(os.path.join(seed_folder, f'implementation_{seed_id}.py')),
            code_output=get_last_line(os.path.join(seed_folder, f'output_{seed_id}.txt')),
        )
        for example_id, seed_id in enumerate(seed_implementations)
    ]
       
    code_samples = ''.join(examples)
    
    problem = general_prompt.problem_prompt.format(
        pde_description=pde_description,
        code_samples=code_samples)

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": problem}
    ]
    return messages


def generate_debugging_prompt(
    round_idx:int,
    working_folder: str,
    debugging_reason:str = 'execution_error'
):
    # Load the prompt from the file
    with open(os.path.join(working_folder, f'messages_{round_idx}.json'), 'r') as f:
        messages = json.load(f)
    # Load model response
    model_response = file_to_string(os.path.join(working_folder, f'responses_{round_idx}.txt'))
    messages.append({"role": "assistant", "content": model_response})
    # Load the error message (truncated to the last 5000 characters)
    code_output = file_to_string(os.path.join(working_folder, f'output_{round_idx}.txt'))[-5000:]
    errors = file_to_string(os.path.join(working_folder, f'errors_{round_idx}.txt'))[-5000:]
    if debugging_reason == 'execution_error':
        feebdack = general_prompt.debugging_execution_error_prompt.format(
            code_output=code_output,
            error_message=errors
        )
    else: # debugging_reason == 'nan_inf'
        feebdack = general_prompt.debugging_nan_inf_prompt.format(
            code_output=code_output,
            error_message=errors
        )
    messages.append({"role": "user", "content": feebdack})
    return messages


def generate_prompt(
    cfg,
    round_idx:int,
    working_folder: str,
    seed_implementations: list|None = None,
    generation_mode:str='initial',
    pde_name:str='burgers'
):
    if generation_mode == 'debugging_execution_error':
        prompt = generate_debugging_prompt(
            round_idx=round_idx,
            working_folder=working_folder,
            debugging_reason='execution_error'
        )
    elif generation_mode == 'debugging_nan_inf':
        prompt = generate_debugging_prompt(
            round_idx=round_idx,
            working_folder=working_folder,
            debugging_reason='nan_inf'
        )
    elif seed_implementations is None or len(seed_implementations) == 0:
        prompt = generate_initial_prompt_without_seed(
            cfg,
            pde_name=pde_name
        )
    else:
        prompt = generate_initial_prompt(
            cfg,
            seed_implementations=seed_implementations,
            working_folder=working_folder,
            pde_name=pde_name
        )

    return prompt


def code_generation(
    cfg, 
    round_idx:int,
    working_folder: str,
    seed_implementations: list|None = None,
    generation_mode: str = 'initial',
    pde_name: str = 'burgers',
    model_name='deepseek-chat'
):

    messages = generate_prompt(
        cfg,
        round_idx=round_idx,
        working_folder=working_folder,
        seed_implementations=seed_implementations,
        generation_mode=generation_mode,
        pde_name=pde_name
    )

    # Save the messages to a file
    with open(os.path.join(working_folder, f'messages_{round_idx}.json'), 'w') as f:
        json.dump(messages, f, ensure_ascii=False, indent=4) 
    responses = generate_response(messages, cfg)
    if 'claude' in model_name:
        content = ''
        for block in responses.content:
            if block.type == 'thinking':
                # Save the CoT of Claude-thinking
                with open(os.path.join(working_folder, f'thinking_{round_idx}.txt'), 'w') as f:
                    f.write(str(block.thinking))
                if content == '':
                    content = block.thinking
            elif block.type == 'text':
                # Extract the final response
                content = block.text
    elif 'gemini' in model_name:
        content = responses.text
    elif 'qwq' in model_name:
        content = responses
    else:
        content = responses.choices[0].message.content
    # Save the response to a file
    with open(os.path.join(working_folder, f'responses_{round_idx}.txt'), 'w') as f:
        f.write(content)

    matches = re.findall(
        r'```python(.*?)```',
        content, re.DOTALL)

    if not matches:
        raise ValueError('No relevant code block found in response')

    generated_code = max(matches, key=len)

    with open(os.path.join(working_folder, f'implementation_{round_idx}.py'), 'w') as f:
        f.write(generated_code)


def code_execution(
    cfg, 
    working_folder: str,
    round_idx: int = 0,
    pde_name: str = 'burgers',
    eval_dataset: str = None
):
    # Copy the implementation file to solver.py to make the evaluator's life easier
    os.system(f'cp {working_folder}/implementation_{round_idx}.py {working_folder}/solver.py')
    
    # Open files for standard output and error logging
    job_out = open(os.path.join(working_folder, f'output_{round_idx}.txt'), 'w')
    job_err = open(os.path.join(working_folder, f'errors_{round_idx}.txt'), 'w')

    # Construct the base command
    if eval_dataset is None:
        eval_dataset = os.path.join(cfg.root_dataset_folder, cfg.pde.dataset_folder_for_eval)
    cmd = (
        f'CUDA_VISIBLE_DEVICES={cfg.assigned_gpu} '
        f'python {working_folder}/evaluator.py '
        f'--save-pth {working_folder} '
        f'--run-id {round_idx} '
        f'--dataset-path-for-eval '
        f'{eval_dataset} '
    )
    # Note: In Funsearch, we will need to customize the eval_dataset to seperate development and testing

    # Append PDE-specific hyperparameters to the command
    if pde_name == 'advection':
        hyperparam = f'--beta {cfg.pde.beta} '
    elif pde_name == 'burgers':
        hyperparam = f'--nu {cfg.pde.nu} '
    elif pde_name == 'reacdiff1d':
        hyperparam = f'--nu {cfg.pde.nu} --rho {cfg.pde.rho} '
    elif pde_name == 'cns1d':
        hyperparam = f'--eta {cfg.pde.eta} '
    elif pde_name in ['darcy', 'ins2d']:
        hyperparam = f' '  # No hyperparameters for these two
    else:
        raise ValueError(f'PDE {pde_name} not recognized')
    
    try:
        # Start process using Popen
        process = subprocess.Popen(
            f'{cmd} {hyperparam}',
            shell=True,
            stdout=job_out,
            stderr=job_err,
            text=True,
            preexec_fn=os.setsid  # Create a new process group
        )
        
        # Wait for the process with timeout
        exit_code = process.wait(timeout=cfg.pde.timeout)
        stderr = None
        status = "completed"
  
    except subprocess.TimeoutExpired:
        # Kill the entire process group on timeout
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
        
        # Wait a moment for graceful termination
        time.sleep(2)
        
        # If still running, use SIGKILL
        if process.poll() is None:
            os.killpg(os.getpgid(process.pid), signal.SIGKILL)
        
        # Clean up any GPU processes that might still be running
        cleanup_gpu_processes(cfg.assigned_gpu)
        
        job_out.write(f"Process exceeded the {cfg.pde.timeout}-second timeout limit.\n")
        job_err.write(f"Process exceeded the {cfg.pde.timeout}-second timeout limit.\n")
        exit_code = -1
        stderr = "TimeoutExpired: Process exceeded the timeout limit."
        status = "timeout"
        
    finally:
        # Always close the files
        job_out.close()
        job_err.close()

    return {
        "exit_code": exit_code,
        "stderr": stderr,
        "status": status
    }

def cleanup_gpu_processes(gpu_id):
    """
    Clean up any orphaned processes still using the specified GPU
    """
    try:
        # Find all processes using this GPU
        result = subprocess.run(
            f"nvidia-smi --query-compute-apps=pid --format=csv,noheader,nounits -i {gpu_id}",
            shell=True,
            capture_output=True,
            text=True
        )
        
        # Extract process IDs
        pids = result.stdout.strip().split('\n')
        
        # Kill each process
        for pid in pids:
            if pid and pid.isdigit():
                try:
                    os.kill(int(pid), signal.SIGKILL)
                    print(f"Killed GPU process with PID {pid}")
                except ProcessLookupError:
                    pass  # Process already terminated
    except Exception as e:
        print(f"Error during GPU cleanup: {e}")


def get_results(output_file):
    result_line = get_last_line(output_file)

    relative_error_match = re.search(r'nRMSE: (.*?)\t', result_line)
    relative_error = float(relative_error_match.group(1))

    elapsed_time_match = re.search(r'Time: (.*?)s', result_line)
    elapsed_time = float(elapsed_time_match.group(1))

    avg_rate_match = re.search(
        r'Average convergence rate: (.*?)\t', result_line)
    avg_rate = float(avg_rate_match.group(1))

    return relative_error, elapsed_time, avg_rate


def prepare_working_folder(
    cfg, 
    working_folder, 
    pde_name='burgers',
    use_sample_solver_init=False
):
    result_sheet_path = os.path.join(working_folder, 'test_results.csv')
    print('Generating result sheet')
    with open(result_sheet_path, 'w') as f:
        f.write('round,nRMSE,elapsed_time,convergence_rate,num_trial\n')

    evluator_path = os.path.join(working_folder, f'evaluator.py')
    os.system(f'cp solvers/{pde_name}/evaluator.py {evluator_path}')
    
    if use_sample_solver_init:
        # We don't copy the sample solvers, nor execute them.
        pass


def generate_and_debug(
    cfg,
    round_idx:int,
    num_trials:int,
    pde_name:str,
    working_folder:str,
    seed_implementations:list|None,
    model_name:str
):
    generation_mode = 'initial'
    for num_trial in range(1, num_trials+1):
        # When num_trial==1, it is not debugging
        # The output of the generated code will be saved in 
        # os.path.join(working_folder, f'generated_code_{round_idx}.txt')
        code_generation(
            cfg, 
            round_idx=round_idx,
            working_folder=working_folder,
            seed_implementations=seed_implementations,
            generation_mode=generation_mode,
            pde_name=pde_name,
            model_name=model_name
        )
        print(f'Round {round_idx}, trial {num_trial} code generation completed successfully')

        print(f'Round {round_idx}, trial {num_trial} code execution started')
        execution_results = code_execution(
            cfg, 
            working_folder=working_folder,
            round_idx=round_idx,
            pde_name=pde_name
        )

        if execution_results['exit_code'] != 0:
            print(f'Error in round {round_idx}, trial {num_trial} code execution.')
            if num_trial < num_trials:
                print(f'Let LLM debug the code')
                generation_mode = 'debugging_execution_error'
            else:
                with open(os.path.join(working_folder, 'test_results.csv'), 'a') as f:
                    f.write(f'{round_idx},failed,failed,failed,{num_trial}\n')
                raise ValueError(f'Error in round {round_idx}, trial {num_trial} code execution.')
            
        else:
            print(f'Round {round_idx}, trial {num_trial} completed successfully')
            relative_error, elapsed_time, avg_rate = get_results(
                os.path.join(working_folder, f'output_{round_idx}.txt')
            )

            if (
                (math.isnan(relative_error) or math.isinf(relative_error))
                and num_trial < num_trials
            ):
                # If we get NaN or Inf in nRMSE and still have chances to debug, we will debug the code
                print(f'nRMSE is NaN/Inf in round {round_idx}, trial {num_trial} code execution.')
                print(f'Let LLM debug the code')
                generation_mode = 'debugging_nan_inf'
            else:
                # Otherwise, we will save the results and break the loop
                with open(os.path.join(working_folder, 'test_results.csv'), 'a') as f:
                    f.write(f'{round_idx},{relative_error},{elapsed_time},{avg_rate},{num_trial}\n')
                print(f'nRMSE: {relative_error:.5f}\t| Time: {elapsed_time:.2f}s\t| Rate: {avg_rate}\t| Trial: {num_trial}')
                return relative_error, elapsed_time, avg_rate
    return None, None, None