Kushtrim's picture
Upload tokenizer
925c95f verified
metadata
library_name: transformers
language:
  - sq
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - Kushtrim/audioshqip
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Turbo Shqip
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Audio Shqip 115 orë
          type: Kushtrim/audioshqip
          args: 'config: sq, split: test'
        metrics:
          - type: wer
            value: 22.006858788533318
            name: Wer

Whisper Large v3 Turbo Shqip

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Audio Shqip 115 orë dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3322
  • Wer: 22.0069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5211 0.2738 500 0.5221 36.9257
0.4152 0.5476 1000 0.4144 31.1469
0.3847 0.8215 1500 0.3747 28.2953
0.2703 1.0953 2000 0.3536 26.4348
0.2471 1.3691 2500 0.3419 25.5897
0.2691 1.6429 3000 0.3293 24.5533
0.2426 1.9168 3500 0.3202 24.5742
0.1993 2.1906 4000 0.3178 23.5548
0.204 2.4644 4500 0.3124 23.6609
0.2 2.7382 5000 0.3098 23.5131
0.1298 3.0120 5500 0.3101 22.5753
0.1213 3.2859 6000 0.3145 23.0129
0.1343 3.5597 6500 0.3105 22.6511
0.1341 3.8335 7000 0.3076 22.3479
0.0895 4.1073 7500 0.3210 22.3593
0.0883 4.3812 8000 0.3223 22.4786
0.0892 4.6550 8500 0.3182 22.1073
0.0937 4.9288 9000 0.3179 21.9008
0.0608 5.2026 9500 0.3326 22.0466
0.0482 5.4765 10000 0.3322 22.0069

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3