File size: 8,767 Bytes
8a615d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "import tensorflow as tf\n",
    "import numpy as np\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the core prediction function\n",
    "def predict_cat_dog(image):\n",
    "    # Preprocess image\n",
    "    print(type(image))\n",
    "    image = Image.fromarray(image.astype('uint8'))  # Convert numpy array to PIL image\n",
    "    image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale\n",
    "    image = np.array(image)\n",
    "    image = np.expand_dims(image, axis=0) # same as image[None, ...]\n",
    "    \n",
    "    # Predict\n",
    "    prediction = model.predict(image)\n",
    "    \n",
    "    # Because the output layer was dense(0) without an activation function, we need to apply sigmoid to get the probability\n",
    "    # we could also change the output layer to dense(1, activation='sigmoid')\n",
    "    prediction = np.round(float(tf.sigmoid(prediction)), 2)\n",
    "    p_jolteon = prediction\n",
    "    p_eevee = (1 - prediction)\n",
    "    p_dratini = (2 - prediction)\n",
    "    return {'jolteon': p_jolteon, 'eevee': p_eevee, 'dratini': p_dratini}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7862\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'numpy.ndarray'>\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\queueing.py\", line 527, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\route_utils.py\", line 270, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\blocks.py\", line 1847, in process_api\n",
      "    result = await self.call_function(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\blocks.py\", line 1433, in call_function\n",
      "    prediction = await anyio.to_thread.run_sync(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2134, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 851, in run\n",
      "    result = context.run(func, *args)\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\utils.py\", line 805, in wrapper\n",
      "    response = f(*args, **kwargs)\n",
      "  File \"C:\\Users\\dom-k\\AppData\\Local\\Temp\\ipykernel_33600\\3230146116.py\", line 11, in predict_cat_dog\n",
      "    prediction = model.predict(image)\n",
      "NameError: name 'model' is not defined\n"
     ]
    }
   ],
   "source": [
    "# Create the Gradio interface\n",
    "input_image = gr.Image()\n",
    "iface = gr.Interface(\n",
    "    fn=predict_cat_dog,\n",
    "    inputs=input_image, \n",
    "    outputs=gr.Label(),\n",
    "    examples=[\"images_pokemon/Dratini1.png\", \"images_pokemon/Dratini2.png\", \"images_pokemon/Dratini3.png\", \"images_pokemon/Dratini4.png\", \"images_pokemon/Dratini5.png\",\n",
    "              \"images_pokemon/Eevee1.png\", \"images_pokemon/Eevee2.png\", \"images_pokemon/Eevee3.png\", \"images_pokemon/Eevee4.png\", \"images_pokemon/Eevee5.png\",\n",
    "              \"images_pokemon/Jolteon1.png\", \"images_pokemon/Jolteon2.png\", \"images_pokemon/Jolteon3.png\", \"images_pokemon/Jolteon4.png\", \"images_pokemon/Jolteon5.png\"],       \n",
    "    description=\"A simple mlp classification model for image classification using the mnist dataset.\")\n",
    "iface.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7863\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'numpy.ndarray'>\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\queueing.py\", line 527, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\route_utils.py\", line 270, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\blocks.py\", line 1847, in process_api\n",
      "    result = await self.call_function(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\blocks.py\", line 1433, in call_function\n",
      "    prediction = await anyio.to_thread.run_sync(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2134, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 851, in run\n",
      "    result = context.run(func, *args)\n",
      "  File \"c:\\Users\\dom-k\\anaconda3\\envs\\KIA\\lib\\site-packages\\gradio\\utils.py\", line 805, in wrapper\n",
      "    response = f(*args, **kwargs)\n",
      "  File \"C:\\Users\\dom-k\\AppData\\Local\\Temp\\ipykernel_33600\\3230146116.py\", line 11, in predict_cat_dog\n",
      "    prediction = model.predict(image)\n",
      "NameError: name 'model' is not defined\n"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "\n",
    "def greet(name, intensity):\n",
    "    return \"Hello, \" + name + \"!\" * int(intensity)\n",
    "\n",
    "demo = gr.Interface(\n",
    "    fn=greet,\n",
    "    inputs=[\"text\", \"slider\"],\n",
    "    outputs=[\"text\"],\n",
    ")\n",
    "\n",
    "demo.launch()\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv_new",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}