File size: 1,875 Bytes
8a5dae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b176f9d
8a5dae5
b176f9d
 
8a5dae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: cc-by-4.0
base_model: dsfsi/BantuBERTa
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: BantuBERTa-vmw-noaug
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BantuBERTa-vmw-noaug

This model is a fine-tuned version of [dsfsi/BantuBERTa](https://huggingface.co/dsfsi/BantuBERTa) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4098
- F1: 0.0
- Roc Auc: 0.4989
- Accuracy: 0.4574

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1  | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---:|:-------:|:--------:|
| 0.586         | 1.0   | 49   | 0.4098          | 0.0 | 0.4989  | 0.4574   |
| 0.3154        | 2.0   | 98   | 0.2930          | 0.0 | 0.5     | 0.4612   |
| 0.2897        | 3.0   | 147  | 0.2906          | 0.0 | 0.5     | 0.4612   |
| 0.2895        | 4.0   | 196  | 0.2892          | 0.0 | 0.5     | 0.4612   |
| 0.285         | 5.0   | 245  | 0.2888          | 0.0 | 0.5     | 0.4612   |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0