File size: 3,308 Bytes
77033dd
aee8d40
 
 
 
 
 
 
 
caa1859
aee8d40
caa1859
aee8d40
caa1859
aee8d40
 
7e4dbc8
 
 
 
4d0d969
7e4dbc8
 
 
 
 
 
 
 
 
 
 
 
 
f587afc
5edb9a0
7e4dbc8
 
4d0d969
 
 
cee8eee
7e4dbc8
 
 
4d0d969
7e4dbc8
 
 
 
 
 
 
 
4d0d969
7e4dbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
language: "en"
tags:
- text-to-speech
- TTS
- speech-synthesis
- Tacotron2
- speechbrain
license: "apache-2.0"
datasets:
- LJSpeech
metrics:
- mos
pipeline_tag: text-to-speech
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Text-to-Speech (TTS) with Transformer trained on LJSpeech

This repository provides all the necessary tools for Text-to-Speech (TTS)  with SpeechBrain using a [Transformer](https://arxiv.org/pdf/1809.08895.pdf) pretrained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/).

The pre-trained model takes in input a short text and produces a spectrogram in output. One can get the final waveform by applying a vocoder (e.g., HiFIGAN) on top of the generated spectrogram.


## Install SpeechBrain

```
pip install speechbrain
```
### Perform Text-to-Speech (TTS)

```python
import torchaudio
from TTSModel import TTSModel
from Models import *
from speechbrain.inference.vocoders import HIFIGAN

texts = ["This is a sample text for synthesis."]

# Intialize TTS (Transformer) and Vocoder (HiFIGAN)
my_tts_model = TTSModel.from_hparams(source="model_source_path")
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")

# Running the TTS
mel_output, mel_length = my_tts_model.encode_text(texts)

# Running Vocoder (spectrogram-to-waveform)
waveforms = hifi_gan.decode_batch(mel_output)

# Save the waverform
torchaudio.save('example_TTS.wav',waveforms.squeeze(1), 22050)
```

If you want to generate multiple sentences in one-shot, pass the sentences as items in a list.


### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.


### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```bash
cd recipes/LJSpeech/TTS/tacotron2/
python train.py --device=cuda:0 --max_grad_norm=1.0 --data_folder=/your_folder/LJSpeech-1.1 hparams/train.yaml
```


### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/


# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```