File size: 1,927 Bytes
4fe7762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476a7e1
 
4fe7762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476a7e1
 
 
 
 
 
 
 
 
 
4fe7762
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: BERTweet
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERTweet

This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3206
- Accuracy: 0.8898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6119        | 0.0994 | 47   | 0.5232          | 0.7661   |
| 0.4769        | 0.1987 | 94   | 0.5216          | 0.7661   |
| 0.4077        | 0.2981 | 141  | 0.4198          | 0.8433   |
| 0.401         | 0.3975 | 188  | 0.3780          | 0.8718   |
| 0.3604        | 0.4968 | 235  | 0.3832          | 0.8628   |
| 0.317         | 0.5962 | 282  | 0.3229          | 0.8913   |
| 0.3708        | 0.6956 | 329  | 0.3560          | 0.8831   |
| 0.3589        | 0.7949 | 376  | 0.3496          | 0.8913   |
| 0.3847        | 0.8943 | 423  | 0.4977          | 0.8411   |
| 0.3504        | 0.9937 | 470  | 0.3206          | 0.8898   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1