File size: 1,984 Bytes
de31462 01ec0b0 de31462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: creativeml-openrail-m
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - KorAI/sdxl-base-1.0-onepiece-lora
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the KorAI/onepiece-captioned dataset. You can find some example images in the following.




LoRA for the text encoder was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
from diffusers import DiffusionPipeline
import torch
# Load Stable Diffusion XL Base1.0
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
).to("cuda")
# Optional CPU offloading to save some GPU Memory
pipe.enable_model_cpu_offload()
# Loading Trained LoRA Weights
pipe.load_lora_weights("KorAI/sdxl-base-1.0-onepiece-lora")
prompt = "Acilia Anime, anime character in a bikini with a sword and shield"
# Invoke pipeline to generate image
image = pipe(
prompt = prompt,
num_inference_steps=50,
height=1024,
width=1024,
guidance_scale=7.0,
).images[0]
# Display image
image
# Save Image
image.save(f"sdxl_onepiece.png")
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |