File size: 4,108 Bytes
fa947da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from pydantic import BaseModel
import openai
from environs import Env
from typing import List

# Configuration and API Key Management
env = Env()
env.read_env("openai.env")
openai.api_key = env.str("OPENAI_API_KEY")
SYSTEM_PROMPT = env.str("SYSTEM_PROMPT", "Suggest a suitable reply for a user in a dating conversation context.")
MODEL = env.str("MODEL", "gpt-3.5-turbo")
NUMBER_OF_MESSAGES_FOR_CONTEXT = min(env.int("NUMBER_OF_MESSAGES_FOR_CONTEXT", 4), 10)
AI_RESPONSE_TIMEOUT = env.int("AI_RESPONSE_TIMEOUT", 20)

class LastChatMessage(BaseModel):
    fromUser: str
    touser: str

class ConversationPayload(BaseModel):
    fromusername: str
    tousername: str
    zodiansign: str
    LastChatMessages: List[dict]
    Chatmood: str

def transform_messages(last_chat_messages):
    t_messages = []
    for chat in last_chat_messages:
        if "fromUser" in chat:
            from_user = chat['fromUser']
            message = chat.get('touser', '')
            t_messages.append(f"{from_user}: {message}")
        elif "touser" in chat:
            to_user = chat['touser']
            message = chat.get('fromUser', '')
            t_messages.append(f"{to_user}: {message}")
    
    if t_messages and "touser" in last_chat_messages[-1]:
        latest_message = t_messages[-1]
        latest_message = f"Q: {latest_message}"
        t_messages[-1] = latest_message
    
    return t_messages

def generate_system_prompt(last_chat_messages, fromusername, tousername, zodiansign=None, chatmood=None):
    prompt = ""
    if not last_chat_messages or ("touser" not in last_chat_messages[-1]):
        prompt = f"Suggest a casual and friendly message for {fromusername} to start a conversation with {tousername} or continue naturally, as if talking to a good friend. Strictly avoid replying to messages from {fromusername} or answering their questions."
    else:
        prompt = f"Suggest a warm and friendly reply for {fromusername} to respond to the last message from {tousername}, as if responding to a dear friend. Strictly avoid replying to messages from {fromusername} or answering their questions."
    
    if zodiansign:
        prompt += f" Keep in mind {tousername}'s {zodiansign} zodiac sign."
    if chatmood:
        prompt += f" Consider the {chatmood} mood."
    
    return prompt

def get_conversation_suggestions(last_chat_messages):
    fromusername = last_chat_messages[-1].get("fromusername", "")
    tousername = last_chat_messages[-1].get("tousername", "")
    zodiansign = last_chat_messages[-1].get("zodiansign", "")
    chatmood = last_chat_messages[-1].get("Chatmood", "")
    
    messages = transform_messages(last_chat_messages)
    
    system_prompt = generate_system_prompt(last_chat_messages, fromusername, tousername, zodiansign, chatmood)
    messages_final = [{"role": "system", "content": system_prompt}]
    
    if messages:
        messages_final.extend([{"role": "user", "content": m} for m in messages])
    else:
        # If there are no messages, add a default message to ensure a response is generated
        default_message = f"{tousername}: Hi there!"
        messages_final.append({"role": "user", "content": default_message})
    
    try:
        response = openai.ChatCompletion.create(
            model=MODEL,
            messages=messages_final,
            temperature=0.7,
            max_tokens=150,
            n=3,
            request_timeout=AI_RESPONSE_TIMEOUT
        )
        
        formatted_replies = []
        for idx, choice in enumerate(response.choices):
            formatted_replies.append({
                "type": "TEXT",
                "body": choice.message['content'],
                "title": f"AI Reply {idx + 1}",
                "confidence": 1,
            })
        
        return formatted_replies
    
    except openai.error.Timeout as e:
        formatted_reply = [{
            "type": "TEXT",
            "body": "Request to the AI response generator has timed out. Please try again later.",
            "title": "AI Response Error",
            "confidence": 1
        }]
        return formatted_reply