metadata
language:
- ja
tags:
- japanese
- pos
- dependency-parsing
datasets:
- universal_dependencies
license: cc-by-sa-4.0
pipeline_tag: token-classification
widget:
- text: 全学年にわたって小学校の国語の教科書に挿し絵が用いられている
deberta-large-japanese-aozora-ud-goeswith
Model Description
This is a DeBERTa(V2) model pretrained on 青空文庫 texts for POS-tagging and dependency-parsing (using goeswith
for subwords), derived from deberta-large-japanese-aozora and UD_Japanese-GSDLUW.
How to Use
class UDgoeswith(object):
def __init__(self,bert):
from transformers import AutoTokenizer,AutoModelForTokenClassification
self.tokenizer=AutoTokenizer.from_pretrained(bert)
self.model=AutoModelForTokenClassification.from_pretrained(bert)
def __call__(self,text):
import numpy,torch,ufal.chu_liu_edmonds
w=self.tokenizer(text,return_offsets_mapping=True)
v=w["input_ids"]
n=len(v)-1
with torch.no_grad():
d=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[v[i]] for i in range(1,n)]))
e=d.logits.numpy()[:,1:n,:]
e[:,:,0]=numpy.nan
m=numpy.full((n,n),numpy.nan)
m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
p=numpy.zeros((n,n))
p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
for i in range(1,n):
m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
u="# text = "+text+"\n"
v=[(s,e) for s,e in w["offset_mapping"] if s<e]
for i,(s,e) in enumerate(v,1):
q=self.model.config.id2label[p[i,h[i]]].split("|")
u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
nlp=UDgoeswith("KoichiYasuoka/deberta-large-japanese-aozora-ud-goeswith")
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
ufal.chu-liu-edmonds is required.