|
--- |
|
language: |
|
- "zh" |
|
tags: |
|
- "chinese" |
|
- "token-classification" |
|
- "pos" |
|
- "wikipedia" |
|
- "dependency-parsing" |
|
datasets: |
|
- "universal_dependencies" |
|
license: "apache-2.0" |
|
pipeline_tag: "token-classification" |
|
--- |
|
|
|
# chinese-roberta-large-upos |
|
|
|
## Model Description |
|
|
|
This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). |
|
|
|
## How to Use |
|
|
|
```py |
|
from transformers import AutoTokenizer,AutoModelForTokenClassification |
|
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos") |
|
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos") |
|
``` |
|
|
|
or |
|
|
|
```py |
|
import esupar |
|
nlp=esupar.load("KoichiYasuoka/chinese-roberta-large-upos") |
|
``` |
|
|
|
## See Also |
|
|
|
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models |
|
|
|
|