Deita-2b / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
89ae940 verified
|
raw
history blame
4.13 kB
metadata
license: other
license_name: general-model-license
license_link: >-
  https://github.com/OpenBMB/General-Model-License/blob/main/%E9%80%9A%E7%94%A8%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE-%E6%9D%A5%E6%BA%90%E8%AF%B4%E6%98%8E-%E5%AE%A3%E4%BC%A0%E9%99%90%E5%88%B6-%E5%95%86%E4%B8%9A%E6%8E%88%E6%9D%83.md
model-index:
  - name: Deita-2b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 44.71
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deita-2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 70.39
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deita-2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 52.79
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deita-2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 39.61
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deita-2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.27
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deita-2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 41.32
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deita-2b
          name: Open LLM Leaderboard

Prompt Example:

### System:
You are an AI assistant. User will give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.
### User: 
How do you fine tune a large language model? 
### Assistant:

License Link: https://github.com/OpenBMB/General-Model-License/blob/main/%E9%80%9A%E7%94%A8%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE-%E6%9D%A5%E6%BA%90%E8%AF%B4%E6%98%8E-%E5%AE%A3%E4%BC%A0%E9%99%90%E5%88%B6-%E5%95%86%E4%B8%9A%E6%8E%88%E6%9D%83.md

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 52.35
AI2 Reasoning Challenge (25-Shot) 44.71
HellaSwag (10-Shot) 70.39
MMLU (5-Shot) 52.79
TruthfulQA (0-shot) 39.61
Winogrande (5-shot) 65.27
GSM8k (5-shot) 41.32