metadata
license: other
datasets:
- totally-not-an-llm/EverythingLM-data-V3
license_name: yi-license
license_link: LICENSE
pipeline_tag: text-generation
model-index:
- name: Deacon-34b-qlora-adapter
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.85
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-qlora-adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.56
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-qlora-adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.38
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-qlora-adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.21
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-qlora-adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.11
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-qlora-adapter
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.24
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Deacon-34b-qlora-adapter
name: Open LLM Leaderboard
The perfect organism.
An adapter for KnutJaegersberg/Yi-34B-Llamafied. 5 epochs with NEFTune.
Prompt Example:
### System:
You are an AI assistant. User will give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.
### Instruction:
How do you fine tune a large language model?
### Response:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.39 |
AI2 Reasoning Challenge (25-Shot) | 64.85 |
HellaSwag (10-Shot) | 85.56 |
MMLU (5-Shot) | 76.38 |
TruthfulQA (0-shot) | 56.21 |
Winogrande (5-shot) | 83.11 |
GSM8k (5-shot) | 62.24 |