File size: 6,069 Bytes
949adbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import random
import torch
import argparse
import torch.nn as nn
import numpy as np

from PIL import Image
from diffusers.models.normalization import AdaGroupNorm
from diffusers import  DDIMScheduler, DPMSolverMultistepScheduler, \
                  DDPMScheduler, StableDiffusionXLPipeline, HunyuanDiTPipeline
                        
                    
from model import NoiseTransformer, SVDNoiseUnet


class NPNet(nn.Module):
      def __init__(self, model_id, pretrained_path=True, device='cuda') -> None:
            super(NPNet, self).__init__()

            assert model_id in ['SDXL', 'DreamShaper', 'DiT']

            self.model_id = model_id
            self.device = device
            self.pretrained_path = pretrained_path

            (
                  self.unet_svd, 
                  self.unet_embedding, 
                  self.text_embedding, 
                  self._alpha, 
                  self._beta
             ) = self.get_model()

      def get_model(self):

            unet_embedding = NoiseTransformer(resolution=128).to(self.device).to(torch.float32)
            unet_svd = SVDNoiseUnet(resolution=128).to(self.device).to(torch.float32)

            if self.model_id == 'DiT':
                  text_embedding = AdaGroupNorm(1024 * 77, 4, 1, eps=1e-6).to(self.device).to(torch.float32)
            else:
                  text_embedding = AdaGroupNorm(2048 * 77, 4, 1, eps=1e-6).to(self.device).to(torch.float32) 

            
            if '.pth' in self.pretrained_path:
                  gloden_unet = torch.load(self.pretrained_path)
                  unet_svd.load_state_dict(gloden_unet["unet_svd"])
                  unet_embedding.load_state_dict(gloden_unet["unet_embedding"])
                  text_embedding.load_state_dict(gloden_unet["embeeding"])
                  _alpha = gloden_unet["alpha"]
                  _beta = gloden_unet["beta"]

                  print("Load Successfully!")

                  return unet_svd, unet_embedding, text_embedding, _alpha, _beta
            
            else:
                  assert ("No Pretrained Weights Found!")
            

      def forward(self, initial_noise, prompt_embeds):

            prompt_embeds = prompt_embeds.float().view(prompt_embeds.shape[0], -1)
            text_emb = self.text_embedding(initial_noise.float(), prompt_embeds)

            encoder_hidden_states_svd = initial_noise
            encoder_hidden_states_embedding = initial_noise + text_emb

            golden_embedding = self.unet_embedding(encoder_hidden_states_embedding.float())

            golden_noise = self.unet_svd(encoder_hidden_states_svd.float()) + (
                        2 * torch.sigmoid(self._alpha) - 1) * text_emb + self._beta * golden_embedding

            return golden_noise
      

def get_args():
      parser = argparse.ArgumentParser()

      # model and dataset construction
      parser.add_argument('--pipeline', default='SDXL', 
                        choices=['SDXL', 'DreamShaper', 'DiT'], type=str)
      parser.add_argument('--prompt', default='A banana on the left of an apple.', type=str)
      parser.add_argument("--inference-step", default=50, type=int)

      # for dreamershaper is 3.5, remaining is 5.5, DiT is 5.0
      parser.add_argument("--cfg", default=5.5, type=float)

      # model pretrained weight path
      parser.add_argument('--pretrained-path', type=str,
                        default='xxx')

      parser.add_argument("--size", default=1024, type=int)

      args = parser.parse_args()

      print("generating config:")
      print(f"Config: {args}")
      print('-' * 100)

      return args


def main(args):
      dtype = torch.float16
      device = torch.device('cuda')

      if args.pipeline == 'SDXL':

            pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
                                                            variant="fp16",use_safetensors=True,
                                                            torch_dtype=torch.float16).to(device)
            
      elif args.pipeline == 'DreamShaper':
            pipe = StableDiffusionXLPipeline.from_pretrained("lykon/dreamshaper-xl-v2-turbo",
                                                            torch_dtype=torch.float16, 
                                                            variant="fp16").to(device)
      
      else:
             pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers", 
                                                            torch_dtype=torch.float16).to(device)
             
      pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
      pipe.enable_model_cpu_offload()

      # create the initial noise
      latent = torch.randn(1, 4, 128, 128, dtype=dtype).to(device)


      # use the pre-trained text encoder in T2I models to encode prompts
      prompt_embeds, _, _, _= pipe.encode_prompt(prompt=args.prompt, device=device)

      # create NPNet to get the target noise
      npn_net = NPNet(args.pipeline, args.pretrained_path)

      golden_noise = npn_net(latent, prompt_embeds)

      # standard inference pipeline
      latent = latent.half()
      golden_noise = golden_noise.half()

      pipe = pipe.to(torch.float16)

      standard_img = pipe(
            prompt=args.prompt,
            height=args.size,
            width=args.size,
            num_inference_steps=args.inference_step,
            guidance_scale=args.cfg,
            latents=latent).images[0]
      
      golden_img = pipe(
            prompt=args.prompt,
            height=args.size,
            width=args.size,
            num_inference_steps=args.inference_step,
            guidance_scale=args.cfg,
            latents=golden_noise).images[0]
      
      # image save path
      standard_img.save(f"{args.pipeline}_{args.prompt}_standard_image.jpg")
      golden_img.save(f"{args.pipeline}_{args.prompt}_golden_image.jpg")
      

if __name__ == '__main__':
      args = get_args()
      main(args)