metadata
language: ru
tags:
- conversational
π Description
DialoGPT trained on Russian language and fine tuned on my telegram chat.
This model was created by sberbank-ai and trained on Russian forums (see Grossmend's model). You can find info about how it has been trained on habr (in Russian). I have created a simple pipeline and fine tuned that model on my own exported telegram chat (~30mb json). It is in fact very easy to get the data from telegram and fine tune a model. Therefore, I made a colab tutorial for it: link
β οΈ Due to specifics of the data Hosted inference API may not work properly β οΈ
β How to use
# Download model and tokenizer
checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
model.eval()
# util function to get expected len after tokenizing
def get_length_param(text: str, tokenizer) -> str:
tokens_count = len(tokenizer.encode(text))
if tokens_count <= 15:
len_param = '1'
elif tokens_count <= 50:
len_param = '2'
elif tokens_count <= 256:
len_param = '3'
else:
len_param = '-'
return len_param
# util function to get next person number (1/0) for Machine or Human in the dialogue
def get_user_param(text: dict, machine_name_in_chat: str) -> str:
if text['from'] == machine_name_in_chat:
return '1' # machine
else:
return '0' # human
chat_history_ids = torch.zeros((1, 0), dtype=torch.int)
while True:
next_who = input("Who's phrase?\t") #input("H / G?") # Human or GPT
# In case Human
if next_who == "H" or next_who == "Human":
input_user = input("===> Human: ")
# encode the new user input, add parameters and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(f"|0|{get_length_param(input_user, tokenizer)}|" \
+ input_user + tokenizer.eos_token, return_tensors="pt")
# append the new user input tokens to the chat history
chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
if next_who == "G" or next_who == "GPT":
next_len = input("Phrase len? 1/2/3/-\t") #input("Exp. len?(-/1/2/3): ")
# encode the new user input, add parameters and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt")
# append the new user input tokens to the chat history
chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
# print(tokenizer.decode(chat_history_ids[-1])) # uncomment to see full gpt input
# save previous len
input_len = chat_history_ids.shape[-1]
# generated a response; PS you can read about the parameters at hf.co/blog/how-to-generate
chat_history_ids = model.generate(
chat_history_ids,
num_return_sequences=1, # use for more variants, but have to print [i]
max_length=512,
no_repeat_ngram_size=3,
do_sample=True,
top_k=50,
top_p=0.9,
temperature = 0.6, # 0 for greedy
mask_token_id=tokenizer.mask_token_id,
eos_token_id=tokenizer.eos_token_id,
unk_token_id=tokenizer.unk_token_id,
pad_token_id=tokenizer.pad_token_id,
device='cpu'
)
# pretty print last ouput tokens from bot
print(f"===> GPT-3: {tokenizer.decode(chat_history_ids[:, input_len:][0], skip_special_tokens=True)}")