Llama3-12b / README.md
KingNish's picture
Update README.md
710c4e0 verified
|
raw
history blame
1.53 kB
---
tags:
- merge
- mergekit
- lazymergekit
- abhishek/autotrain-llama3-orpo-v2
base_model:
- abhishek/autotrain-llama3-orpo-v2
- abhishek/autotrain-llama3-orpo-v2
license: llama3
pipeline_tag: text-generation
---
# NeuralPipe-7B-slerp
NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [abhishek/autotrain-llama3-orpo-v2](https://huggingface.co/abhishek/autotrain-llama3-orpo-v2)
* [abhishek/autotrain-llama3-orpo-v2](https://huggingface.co/abhishek/autotrain-llama3-orpo-v2)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: abhishek/autotrain-llama3-orpo-v2
layer_range: [0, 24]
- sources:
- model: abhishek/autotrain-llama3-orpo-v2
layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "KingNish/NeuralPipe-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```