File size: 2,651 Bytes
7df5e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# xsum_6789_3000_1500_train

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/xsum_6789_3000_1500_train")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 16
* Number of training documents: 3000

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | league - club - game - win - player | 5 | -1_league_club_game_win | 
| 0 | said - mr - would - people - year | 382 | 0_said_mr_would_people | 
| 1 | sport - medal - gold - team - olympic | 2143 | 1_sport_medal_gold_team | 
| 2 | cricket - wicket - test - england - match | 72 | 2_cricket_wicket_test_england | 
| 3 | arsenal - league - liverpool - chelsea - kick | 56 | 3_arsenal_league_liverpool_chelsea | 
| 4 | world - open - round - mcilroy - golf | 55 | 4_world_open_round_mcilroy | 
| 5 | foul - town - half - kick - win | 52 | 5_foul_town_half_kick | 
| 6 | season - club - dedicated - transfer - appearance | 46 | 6_season_club_dedicated_transfer | 
| 7 | celtic - game - aberdeen - rangers - player | 42 | 7_celtic_game_aberdeen_rangers | 
| 8 | madrid - atltico - win - real - barcelona | 36 | 8_madrid_atltico_win_real | 
| 9 | race - hamilton - team - prix - grand | 26 | 9_race_hamilton_team_prix | 
| 10 | rugby - wales - game - coach - england | 22 | 10_rugby_wales_game_coach | 
| 11 | fight - champion - boxing - amateur - world | 19 | 11_fight_champion_boxing_amateur | 
| 12 | yn - wedi - ei - ar - bod | 17 | 12_yn_wedi_ei_ar | 
| 13 | fan - club - bet - stadium - standing | 14 | 13_fan_club_bet_stadium | 
| 14 | connacht - ronaldson - blade - penalty - ulster | 13 | 14_connacht_ronaldson_blade_penalty |
  
</details>

## Training hyperparameters

* calculate_probabilities: True
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False

## Framework versions

* Numpy: 1.22.4
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.31.0
* Numba: 0.57.1
* Plotly: 5.13.1
* Python: 3.10.12