File size: 2,137 Bytes
65e2d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# xsum_22457_3000_1500_test
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/xsum_22457_3000_1500_test")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 10
* Number of training documents: 1500
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | said - club - player - game - football | 10 | -1_said_club_player_game |
| 0 | said - mr - people - would - year | 167 | 0_said_mr_people_would |
| 1 | kick - shot - free - goal - right | 1066 | 1_kick_shot_free_goal |
| 2 | midfielder - loan - season - club - league | 69 | 2_midfielder_loan_season_club |
| 3 | race - sport - gold - medal - olympic | 53 | 3_race_sport_gold_medal |
| 4 | celtic - club - aberdeen - cup - player | 39 | 4_celtic_club_aberdeen_cup |
| 5 | england - cricket - wicket - test - captain | 33 | 5_england_cricket_wicket_test |
| 6 | cup - wales - rugby - game - fa | 33 | 6_cup_wales_rugby_game |
| 7 | wimbledon - player - murray - im - atp | 18 | 7_wimbledon_player_murray_im |
| 8 | armstrong - banned - antidoping - rugby - sky | 12 | 8_armstrong_banned_antidoping_rugby |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
## Framework versions
* Numpy: 1.22.4
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.31.0
* Numba: 0.57.1
* Plotly: 5.13.1
* Python: 3.10.12
|