KiViDrag's picture
End of training
2e984b5 verified
|
raw
history blame
4.52 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - f1
model-index:
  - name: ViT_breastmnist_std_0
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: medmnist-v2
          type: medmnist-v2
          config: breastmnist
          split: validation
          args: breastmnist
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8717948717948718
          - name: F1
            type: f1
            value: 0.8370927318295739

ViT_breastmnist_std_0

This model is a fine-tuned version of google/vit-base-patch16-224 on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3272
  • Accuracy: 0.8718
  • F1: 0.8371

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3533 0.2597 20 0.3035 0.8846 0.8406
0.1354 0.5195 40 0.2280 0.8974 0.8655
0.0247 0.7792 60 0.2669 0.9231 0.8956
0.0089 1.0390 80 0.2742 0.9231 0.8956
0.003 1.2987 100 0.3404 0.9103 0.8803
0.0018 1.5584 120 0.3583 0.9231 0.8956
0.0013 1.8182 140 0.3720 0.9231 0.8956
0.0009 2.0779 160 0.3892 0.9231 0.8956
0.0007 2.3377 180 0.3933 0.9231 0.8956
0.0006 2.5974 200 0.3948 0.9231 0.8956
0.0005 2.8571 220 0.4038 0.9231 0.8956
0.0005 3.1169 240 0.4145 0.9231 0.8956
0.0004 3.3766 260 0.4176 0.9231 0.8956
0.0004 3.6364 280 0.4230 0.9231 0.8956
0.0003 3.8961 300 0.4274 0.9103 0.8803
0.0003 4.1558 320 0.4344 0.9231 0.8956
0.0003 4.4156 340 0.4380 0.9231 0.8956
0.0003 4.6753 360 0.4406 0.9103 0.8803
0.0003 4.9351 380 0.4459 0.9231 0.8956
0.0002 5.1948 400 0.4472 0.9103 0.8803
0.0002 5.4545 420 0.4514 0.9103 0.8803
0.0002 5.7143 440 0.4550 0.9231 0.8956
0.0002 5.9740 460 0.4579 0.9231 0.8956
0.0002 6.2338 480 0.4600 0.9231 0.8956
0.0002 6.4935 500 0.4614 0.9103 0.8803
0.0002 6.7532 520 0.4637 0.9231 0.8956
0.0002 7.0130 540 0.4660 0.9231 0.8956
0.0002 7.2727 560 0.4684 0.9231 0.8956
0.0002 7.5325 580 0.4695 0.9231 0.8956
0.0002 7.7922 600 0.4710 0.9103 0.8803
0.0001 8.0519 620 0.4719 0.9103 0.8803
0.0001 8.3117 640 0.4726 0.9103 0.8803
0.0001 8.5714 660 0.4742 0.9103 0.8803
0.0001 8.8312 680 0.4754 0.9231 0.8956
0.0002 9.0909 700 0.4757 0.9231 0.8956
0.0001 9.3506 720 0.4759 0.9231 0.8956
0.0001 9.6104 740 0.4763 0.9231 0.8956
0.0001 9.8701 760 0.4765 0.9231 0.8956

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0