|
--- |
|
language: |
|
- da |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: "### Bruger:\nAnders\n\n### Anmeldelse:\nUmuligt at komme igennem på telefonen.\n\n### Svar:\nKære Anders\n" |
|
--- |
|
|
|
# What is this? |
|
|
|
A fine-tuned GPT-2 model (medium version, ~354.8 M parameters) for generating responses to customer reviews in Danish. |
|
|
|
# How to use |
|
|
|
The model is based on the [gpt2-medium-danish model](https://huggingface.co/KennethTM/gpt2-medium-danish) and performs better than the smaller version ([gpt2-small-danish-review-response](https://huggingface.co/KennethTM/gpt2-small-danish-review-response)). Supervised fine-tuning is applied to adapt the model to generate responses to customer reviews in Danish. A prompting template is applied to the examples used for training (see the example below). |
|
|
|
Test the model using the pipeline from the [🤗 Transformers](https://github.com/huggingface/transformers) library: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
generator = pipeline("text-generation", model = "KennethTM/gpt2-medium-danish-review-response") |
|
|
|
def prompt_template(user, review): |
|
return f"### Bruger:\n{user}\n\n### Anmeldelse:\n{review}\n\n### Svar:\nKære {user}\n" |
|
|
|
prompt = prompt_template(user = "Anders", review = "Umuligt at komme igennem på telefonen.") |
|
|
|
text = generator(prompt) |
|
|
|
print(text[0]["generated_text"]) |
|
``` |
|
|
|
Or load it using the Auto* classes: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("KennethTM/gpt2-medium-danish-review-response") |
|
model = AutoModelForCausalLM.from_pretrained("KennethTM/gpt2-medium-danish-review-response") |
|
``` |