KennethTM's picture
Update README.md
32bfd93
|
raw
history blame
1.63 kB
metadata
language:
  - da
pipeline_tag: text-generation
widget:
  - text: |
      ### Bruger:
      Anders

      ### Anmeldelse:
      Umuligt at komme igennem  telefonen.

      ### Svar:
      Kære Anders

What is this?

A fine-tuned GPT-2 model (medium version, ~354.8 M parameters) for generating responses to customer reviews in Danish.

How to use

The model is based on the gpt2-medium-danish model and performs better than the smaller version (gpt2-small-danish-review-response ). Supervised fine-tuning is applied to adapt the model to generate responses to customer reviews in Danish. A prompting template is applied to the examples used to train (see the example below).

Test the model using the pipeline from the 🤗 Transformers library:

from transformers import pipeline

generator = pipeline("text-generation", model = "KennethTM/gpt2-medium-danish-review-response")

def prompt_template(user, review):
    return f"### Bruger:\n{user}\n\n### Anmeldelse:\n{review}\n\n### Svar:\nKære {user}\n"

prompt = prompt_template(user = "Anders", review = "Umuligt at komme igennem på telefonen.")

text = generator(prompt)

print(text[0]["generated_text"])

Or load it using the Auto* classes:

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("KennethTM/gpt2-medium-danish-review-response")
model = AutoModelForCausalLM.from_pretrained("KennethTM/gpt2-medium-danish-review-response")