File size: 17,834 Bytes
62456b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97cf609
 
62456b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97cf609
 
62456b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c51a99
62456b0
 
 
 
b7f55d8
62456b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as M
import math
from torch import Tensor
from torch.nn import Parameter

'''https://github.com/orashi/AlacGAN/blob/master/models/standard.py'''

def l2normalize(v, eps=1e-12):
    return v / (v.norm() + eps)


class SpectralNorm(nn.Module):
    def __init__(self, module, name='weight', power_iterations=1):
        super(SpectralNorm, self).__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()

    def _update_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data))
            u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data))

        # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _made_params(self):
        try:
            u = getattr(self.module, self.name + "_u")
            v = getattr(self.module, self.name + "_v")
            w = getattr(self.module, self.name + "_bar")
            return True
        except AttributeError:
            return False


    def _make_params(self):
        w = getattr(self.module, self.name)
        height = w.data.shape[0]
        width = w.view(height, -1).data.shape[1]

        u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
        v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
        u.data = l2normalize(u.data)
        v.data = l2normalize(v.data)
        w_bar = Parameter(w.data)

        del self.module._parameters[self.name]

        self.module.register_parameter(self.name + "_u", u)
        self.module.register_parameter(self.name + "_v", v)
        self.module.register_parameter(self.name + "_bar", w_bar)


    def forward(self, *args):
        self._update_u_v()
        return self.module.forward(*args)

class Selayer(nn.Module):
    def __init__(self, inplanes):
        super(Selayer, self).__init__()
        self.global_avgpool = nn.AdaptiveAvgPool2d(1)
        self.conv1 = nn.Conv2d(2, inplanes // 16, kernel_size=1, stride=1)
        self.conv2 = nn.Conv2d(inplanes // 16, 2, kernel_size=1, stride=1)
        self.relu = nn.ReLU(inplace=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        out = self.global_avgpool(x)
        out = self.conv1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.sigmoid(out)

        return x * out
    
class SelayerSpectr(nn.Module):
    def __init__(self, inplanes):
        super(SelayerSpectr, self).__init__()
        self.global_avgpool = nn.AdaptiveAvgPool2d(1)
        self.conv1 = SpectralNorm(nn.Conv2d(2, inplanes // 16, kernel_size=1, stride=1))
        self.conv2 = SpectralNorm(nn.Conv2d(inplanes // 16, 2, kernel_size=1, stride=1))
        self.relu = nn.ReLU(inplace=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        out = self.global_avgpool(x)
        out = self.conv1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.sigmoid(out)

        return x * out

class ResNeXtBottleneck(nn.Module):
    def __init__(self, in_channels=256, out_channels=256, stride=1, cardinality=32, dilate=1):
        super(ResNeXtBottleneck, self).__init__()
        D = out_channels // 2
        self.out_channels = out_channels
        self.conv_reduce = nn.Conv2d(in_channels, D, kernel_size=1, stride=1, padding=0, bias=False)
        self.conv_conv = nn.Conv2d(D, D, kernel_size=2 + stride, stride=stride, padding=dilate, dilation=dilate,
                                   groups=cardinality,
                                   bias=False)
        self.conv_expand = nn.Conv2d(D, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
        self.shortcut = nn.Sequential()
        if stride != 1:
            self.shortcut.add_module('shortcut',
                                     nn.AvgPool2d(2, stride=2))
            
        self.selayer = Selayer(out_channels)

    def forward(self, x):
        bottleneck = self.conv_reduce.forward(x)
        bottleneck = F.leaky_relu(bottleneck, 0.2, True)
        bottleneck = self.conv_conv.forward(bottleneck)
        bottleneck = F.leaky_relu(bottleneck, 0.2, True)
        bottleneck = self.conv_expand.forward(bottleneck)
        bottleneck = self.selayer(bottleneck)
        
        x = self.shortcut.forward(x)
        return x + bottleneck
    
class SpectrResNeXtBottleneck(nn.Module):
    def __init__(self, in_channels=256, out_channels=256, stride=1, cardinality=32, dilate=1):
        super(SpectrResNeXtBottleneck, self).__init__()
        D = out_channels // 2
        self.out_channels = out_channels
        self.conv_reduce = SpectralNorm(nn.Conv2d(in_channels, D, kernel_size=1, stride=1, padding=0, bias=False))
        self.conv_conv = SpectralNorm(nn.Conv2d(D, D, kernel_size=2 + stride, stride=stride, padding=dilate, dilation=dilate,
                                   groups=cardinality,
                                   bias=False))
        self.conv_expand = SpectralNorm(nn.Conv2d(D, out_channels, kernel_size=1, stride=1, padding=0, bias=False))
        self.shortcut = nn.Sequential()
        if stride != 1:
            self.shortcut.add_module('shortcut',
                                     nn.AvgPool2d(2, stride=2))
            
        self.selayer = SelayerSpectr(out_channels)

    def forward(self, x):
        bottleneck = self.conv_reduce.forward(x)
        bottleneck = F.leaky_relu(bottleneck, 0.2, True)
        bottleneck = self.conv_conv.forward(bottleneck)
        bottleneck = F.leaky_relu(bottleneck, 0.2, True)
        bottleneck = self.conv_expand.forward(bottleneck)
        bottleneck = self.selayer(bottleneck)
        
        x = self.shortcut.forward(x)
        return x + bottleneck
    
class FeatureConv(nn.Module):
    def __init__(self, input_dim=512, output_dim=512):
        super(FeatureConv, self).__init__()

        no_bn = True
        
        seq = []
        seq.append(nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=1, padding=1, bias=False))
        if not no_bn: seq.append(nn.BatchNorm2d(output_dim))
        seq.append(nn.ReLU(inplace=True))
        seq.append(nn.Conv2d(output_dim, output_dim, kernel_size=3, stride=2, padding=1, bias=False))
        if not no_bn: seq.append(nn.BatchNorm2d(output_dim))
        seq.append(nn.ReLU(inplace=True))
        seq.append(nn.Conv2d(output_dim, output_dim, kernel_size=3, stride=1, padding=1, bias=False))
        seq.append(nn.ReLU(inplace=True))

        self.network = nn.Sequential(*seq)

    def forward(self, x):
        return self.network(x)
    
class Generator(nn.Module):
    def __init__(self, ngf=64, input_channels=9):  # Cambia el número de canales de entrada aquí
        super(Generator, self).__init__()
        
        self.feature_conv = FeatureConv()

        self.to0 = self._make_encoder_block_first(input_channels, 32)
        self.to1 = self._make_encoder_block(32, 64)
        self.to2 = self._make_encoder_block(64, 128)
        self.to3 = self._make_encoder_block(128, 256)
        self.to4 = self._make_encoder_block(256, 512)
        
        self.deconv_for_decoder = nn.Sequential(
            nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), # output is 64 * 64
            nn.LeakyReLU(0.2),
            nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), # output is 128 * 128
            nn.LeakyReLU(0.2),
            nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1), # output is 256 * 256
            nn.LeakyReLU(0.2),
            nn.ConvTranspose2d(32, 3, 3, stride=1, padding=1, output_padding=0), # output is 256 * 256
            nn.Tanh(),
        )

        tunnel4 = nn.Sequential(*[ResNeXtBottleneck(ngf * 8, ngf * 8, cardinality=32, dilate=1) for _ in range(20)])

        self.tunnel4 = nn.Sequential(nn.Conv2d(ngf * 8 + 512, ngf * 8, kernel_size=3, stride=1, padding=1),
                                     nn.LeakyReLU(0.2, True),
                                     tunnel4,
                                     nn.Conv2d(ngf * 8, ngf * 4 * 4, kernel_size=3, stride=1, padding=1),
                                     nn.PixelShuffle(2),
                                     nn.LeakyReLU(0.2, True)
                                     )  # 64

        depth = 2
        tunnel = [ResNeXtBottleneck(ngf * 4, ngf * 4, cardinality=32, dilate=1) for _ in range(depth)]
        tunnel += [ResNeXtBottleneck(ngf * 4, ngf * 4, cardinality=32, dilate=2) for _ in range(depth)]
        tunnel += [ResNeXtBottleneck(ngf * 4, ngf * 4, cardinality=32, dilate=4) for _ in range(depth)]
        tunnel += [ResNeXtBottleneck(ngf * 4, ngf * 4, cardinality=32, dilate=2),
                   ResNeXtBottleneck(ngf * 4, ngf * 4, cardinality=32, dilate=1)]
        tunnel3 = nn.Sequential(*tunnel)

        self.tunnel3 = nn.Sequential(nn.Conv2d(ngf * 8, ngf * 4, kernel_size=3, stride=1, padding=1),
                                     nn.LeakyReLU(0.2, True),
                                     tunnel3,
                                     nn.Conv2d(ngf * 4, ngf * 2 * 4, kernel_size=3, stride=1, padding=1),
                                     nn.PixelShuffle(2),
                                     nn.LeakyReLU(0.2, True)
                                     )  # 128

        tunnel = [ResNeXtBottleneck(ngf * 2, ngf * 2, cardinality=32, dilate=1) for _ in range(depth)]
        tunnel += [ResNeXtBottleneck(ngf * 2, ngf * 2, cardinality=32, dilate=2) for _ in range(depth)]
        tunnel += [ResNeXtBottleneck(ngf * 2, ngf * 2, cardinality=32, dilate=4) for _ in range(depth)]
        tunnel += [ResNeXtBottleneck(ngf * 2, ngf * 2, cardinality=32, dilate=2),
                   ResNeXtBottleneck(ngf * 2, ngf * 2, cardinality=32, dilate=1)]
        tunnel2 = nn.Sequential(*tunnel)

        self.tunnel2 = nn.Sequential(nn.Conv2d(ngf * 4, ngf * 2, kernel_size=3, stride=1, padding=1),
                                     nn.LeakyReLU(0.2, True),
                                     tunnel2,
                                     nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=1, padding=1),
                                     nn.PixelShuffle(2),
                                     nn.LeakyReLU(0.2, True)
                                     )

        tunnel = [ResNeXtBottleneck(ngf, ngf, cardinality=16, dilate=1)]
        tunnel += [ResNeXtBottleneck(ngf, ngf, cardinality=16, dilate=2)]
        tunnel += [ResNeXtBottleneck(ngf, ngf, cardinality=16, dilate=4)]
        tunnel += [ResNeXtBottleneck(ngf, ngf, cardinality=16, dilate=2),
                   ResNeXtBottleneck(ngf, ngf, cardinality=16, dilate=1)]
        tunnel1 = nn.Sequential(*tunnel)

        self.tunnel1 = nn.Sequential(nn.Conv2d(ngf * 2, ngf, kernel_size=3, stride=1, padding=1),
                                     nn.LeakyReLU(0.2, True),
                                     tunnel1,
                                     nn.Conv2d(ngf, ngf * 2, kernel_size=3, stride=1, padding=1),
                                     nn.PixelShuffle(2),
                                     nn.LeakyReLU(0.2, True)
                                     )

        self.exit = nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)

        
    def _make_encoder_block(self, inplanes, planes):
        return nn.Sequential(
            nn.Conv2d(inplanes, planes, 3, 2, 1),
            nn.LeakyReLU(0.2),
            nn.Conv2d(planes, planes, 3, 1, 1),
            nn.LeakyReLU(0.2),
        )

    def _make_encoder_block_first(self, inplanes, planes):
        return nn.Sequential(
            nn.Conv2d(inplanes, planes, 3, 1, 1),
            nn.LeakyReLU(0.2),
            nn.Conv2d(planes, planes, 3, 1, 1),
            nn.LeakyReLU(0.2),
        )    
        
    def forward(self, sketch, sketch_feat):

        x0 = self.to0(sketch)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(x2)  
        x4 = self.to4(x3)

        sketch_feat = self.feature_conv(sketch_feat)
        
        out = self.tunnel4(torch.cat([x4, sketch_feat], 1))
        
        
        
        
        x = self.tunnel3(torch.cat([out, x3], 1))
        x = self.tunnel2(torch.cat([x, x2], 1))
        x = self.tunnel1(torch.cat([x, x1], 1))
        x = torch.tanh(self.exit(torch.cat([x, x0], 1)))
        
        decoder_output = self.deconv_for_decoder(out)

        return x, decoder_output    
'''
class Colorizer(nn.Module):
    def __init__(self, extractor_path = 'model/model.pth'):
        super(Colorizer, self).__init__()
        
        self.generator = Generator()
        self.extractor = se_resnext_half(dump_path=extractor_path, num_classes=370, input_channels=1)
        
    def extractor_eval(self):
        for param in self.extractor.parameters():
            param.requires_grad = False
            
    def extractor_train(self):
        for param in extractor.parameters():
            param.requires_grad = True
            
    def forward(self, x, extractor_grad = False):
        
        if extractor_grad:
            features = self.extractor(x[:, 0:1])
        else:
            with torch.no_grad():
                features = self.extractor(x[:, 0:1]).detach()

        fake, guide = self.generator(x, features)

        return fake, guide
'''

class Colorizer(nn.Module):
    def __init__(self, generator_model, extractor_model):
        super(Colorizer, self).__init__()
        
        self.generator = generator_model
        self.extractor = extractor_model
        
    def load_generator_weights(self, gen_weights):
        self.generator.load_state_dict(gen_weights)
        
    def load_extractor_weights(self, ext_weights):
        self.extractor.load_state_dict(ext_weights)
        
    def extractor_eval(self):
        for param in self.extractor.parameters():
            param.requires_grad = False
        self.extractor.eval()
            
    def extractor_train(self):
        for param in extractor.parameters():
            param.requires_grad = True
        self.extractor.train()
            
    def forward(self, x, extractor_grad = False):
        
        if extractor_grad:
            features = self.extractor(x[:, 0:1])
        else:
            with torch.no_grad():
                features = self.extractor(x[:, 0:1]).detach()

        fake, guide = self.generator(x, features)

        return fake, guide

class Discriminator(nn.Module):
    def __init__(self, ndf=64):
        super(Discriminator, self).__init__()

        self.feed = nn.Sequential(SpectralNorm(nn.Conv2d(3, 64, 3, 1, 1)),
                                nn.LeakyReLU(0.2, True),
                                SpectralNorm(nn.Conv2d(64, 64, 3, 2, 0)),
                                nn.LeakyReLU(0.2, True),
            
            
            
            
                                  SpectrResNeXtBottleneck(ndf, ndf, cardinality=8, dilate=1),
                                  SpectrResNeXtBottleneck(ndf, ndf, cardinality=8, dilate=1, stride=2),  # 128
                                  SpectralNorm(nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=False)),
                                  nn.LeakyReLU(0.2, True),

                                  SpectrResNeXtBottleneck(ndf * 2, ndf * 2, cardinality=8, dilate=1),
                                  SpectrResNeXtBottleneck(ndf * 2, ndf * 2, cardinality=8, dilate=1, stride=2),  # 64
                                  SpectralNorm(nn.Conv2d(ndf * 2, ndf * 4, kernel_size=1, stride=1, padding=0, bias=False)),
                                  nn.LeakyReLU(0.2, True),

                                  SpectrResNeXtBottleneck(ndf * 4, ndf * 4, cardinality=8, dilate=1),
                                  SpectrResNeXtBottleneck(ndf * 4, ndf * 4, cardinality=8, dilate=1, stride=2),  # 32,
                                  SpectralNorm(nn.Conv2d(ndf * 4, ndf * 8, kernel_size=1, stride=1, padding=1, bias=False)),  
                                  nn.LeakyReLU(0.2, True),
                                  SpectrResNeXtBottleneck(ndf * 8, ndf * 8, cardinality=8, dilate=1),
                                  SpectrResNeXtBottleneck(ndf * 8, ndf * 8, cardinality=8, dilate=1, stride=2),  # 16
                                  SpectrResNeXtBottleneck(ndf * 8, ndf * 8, cardinality=8, dilate=1),
                                  SpectrResNeXtBottleneck(ndf * 8, ndf * 8, cardinality=8, dilate=1),
                                  nn.AdaptiveAvgPool2d((1, 1))
                                  )

        self.out = nn.Linear(512, 1)

    def forward(self, color):
        x = self.feed(color)
        
        out = self.out(x.view(color.size(0), -1))
        return out
    
class Content(nn.Module):
    def __init__(self, path):
        super(Content, self).__init__()
        vgg16 = M.vgg16()
        vgg16.load_state_dict(torch.load(path))
        vgg16.features = nn.Sequential(
            *list(vgg16.features.children())[:9]
        )
        self.model = vgg16.features
        self.register_buffer('mean', torch.FloatTensor([0.485 - 0.5, 0.456 - 0.5, 0.406 - 0.5]).view(1, 3, 1, 1))
        self.register_buffer('std', torch.FloatTensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))

    def forward(self, images):
        return self.model((images.mul(0.5) - self.mean) / self.std)