|
import math |
|
import pickle |
|
|
|
import torch |
|
from torch import distributed as dist |
|
from torch.utils.data.sampler import Sampler |
|
|
|
|
|
def get_rank(): |
|
if not dist.is_available(): |
|
return 0 |
|
|
|
if not dist.is_initialized(): |
|
return 0 |
|
|
|
return dist.get_rank() |
|
|
|
|
|
def synchronize(): |
|
if not dist.is_available(): |
|
return |
|
|
|
if not dist.is_initialized(): |
|
return |
|
|
|
world_size = dist.get_world_size() |
|
|
|
if world_size == 1: |
|
return |
|
|
|
dist.barrier() |
|
|
|
|
|
def get_world_size(): |
|
if not dist.is_available(): |
|
return 1 |
|
|
|
if not dist.is_initialized(): |
|
return 1 |
|
|
|
return dist.get_world_size() |
|
|
|
|
|
def reduce_sum(tensor): |
|
if not dist.is_available(): |
|
return tensor |
|
|
|
if not dist.is_initialized(): |
|
return tensor |
|
|
|
tensor = tensor.clone() |
|
dist.all_reduce(tensor, op=dist.ReduceOp.SUM) |
|
|
|
return tensor |
|
|
|
|
|
def gather_grad(params): |
|
world_size = get_world_size() |
|
|
|
if world_size == 1: |
|
return |
|
|
|
for param in params: |
|
if param.grad is not None: |
|
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) |
|
param.grad.data.div_(world_size) |
|
|
|
|
|
def all_gather(data): |
|
world_size = get_world_size() |
|
|
|
if world_size == 1: |
|
return [data] |
|
|
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to('cuda') |
|
|
|
local_size = torch.IntTensor([tensor.numel()]).to('cuda') |
|
size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda')) |
|
|
|
if local_size != max_size: |
|
padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda') |
|
tensor = torch.cat((tensor, padding), 0) |
|
|
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
|
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def reduce_loss_dict(loss_dict): |
|
world_size = get_world_size() |
|
|
|
if world_size < 2: |
|
return loss_dict |
|
|
|
with torch.no_grad(): |
|
keys = [] |
|
losses = [] |
|
|
|
for k in sorted(loss_dict.keys()): |
|
keys.append(k) |
|
losses.append(loss_dict[k]) |
|
|
|
losses = torch.stack(losses, 0) |
|
dist.reduce(losses, dst=0) |
|
|
|
if dist.get_rank() == 0: |
|
losses /= world_size |
|
|
|
reduced_losses = {k: v for k, v in zip(keys, losses)} |
|
|
|
return reduced_losses |
|
|