|
from torchvision import models |
|
from collections import namedtuple |
|
import torch |
|
import torch.nn as nn |
|
|
|
def vgg_preprocess(tensor): |
|
|
|
|
|
mean_val = torch.Tensor([0.485, 0.456, 0.406]).type_as(tensor).view(-1, 1, 1) |
|
std_val = torch.Tensor([0.229, 0.224, 0.225]).type_as(tensor).view(-1, 1, 1) |
|
tensor_norm = (tensor - mean_val) / std_val |
|
return tensor_norm |
|
|
|
class vgg19(nn.Module): |
|
|
|
def __init__(self, pretrained_path = './experiments/VGG19/vgg19-dcbb9e9d.pth', require_grad = False): |
|
super(vgg19, self).__init__() |
|
self.vgg_model = models.vgg19() |
|
if pretrained_path != None: |
|
print('----load pretrained vgg19----') |
|
self.vgg_model.load_state_dict(torch.load(pretrained_path)) |
|
print('----load done!----') |
|
self.vgg_feature = self.vgg_model.features |
|
self.seq_list = [nn.Sequential(ele) for ele in self.vgg_feature] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not require_grad: |
|
for parameter in self.parameters(): |
|
parameter.requires_grad = False |
|
|
|
def forward(self, x, layer_name='relu5_2'): |
|
|
|
x = vgg_preprocess(x) |
|
|
|
conv1_1 = self.seq_list[0](x) |
|
relu1_1 = self.seq_list[1](conv1_1) |
|
conv1_2 = self.seq_list[2](relu1_1) |
|
relu1_2 = self.seq_list[3](conv1_2) |
|
pool1 = self.seq_list[4](relu1_2) |
|
|
|
conv2_1 = self.seq_list[5](pool1) |
|
relu2_1 = self.seq_list[6](conv2_1) |
|
conv2_2 = self.seq_list[7](relu2_1) |
|
relu2_2 = self.seq_list[8](conv2_2) |
|
pool2 = self.seq_list[9](relu2_2) |
|
|
|
conv3_1 = self.seq_list[10](pool2) |
|
relu3_1 = self.seq_list[11](conv3_1) |
|
conv3_2 = self.seq_list[12](relu3_1) |
|
relu3_2 = self.seq_list[13](conv3_2) |
|
conv3_3 = self.seq_list[14](relu3_2) |
|
relu3_3 = self.seq_list[15](conv3_3) |
|
conv3_4 = self.seq_list[16](relu3_3) |
|
relu3_4 = self.seq_list[17](conv3_4) |
|
pool3 = self.seq_list[18](relu3_4) |
|
|
|
conv4_1 = self.seq_list[19](pool3) |
|
relu4_1 = self.seq_list[20](conv4_1) |
|
conv4_2 = self.seq_list[21](relu4_1) |
|
relu4_2 = self.seq_list[22](conv4_2) |
|
conv4_3 = self.seq_list[23](relu4_2) |
|
relu4_3 = self.seq_list[24](conv4_3) |
|
conv4_4 = self.seq_list[25](relu4_3) |
|
relu4_4 = self.seq_list[26](conv4_4) |
|
pool4 = self.seq_list[27](relu4_4) |
|
|
|
conv5_1 = self.seq_list[28](pool4) |
|
relu5_1 = self.seq_list[29](conv5_1) |
|
conv5_2 = self.seq_list[30](relu5_1) |
|
relu5_2 = self.seq_list[31](conv5_2) |
|
conv5_3 = self.seq_list[32](relu5_2) |
|
relu5_3 = self.seq_list[33](conv5_3) |
|
conv5_4 = self.seq_list[34](relu5_3) |
|
relu5_4 = self.seq_list[35](conv5_4) |
|
pool5 = self.seq_list[36](relu5_4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if layer_name == 'relu5_2': |
|
vgg_list = [relu5_2] |
|
elif layer_name == 'conv5_2': |
|
vgg_list = [conv5_2] |
|
elif layer_name == 'relu5_4': |
|
vgg_list = [relu5_4] |
|
elif layer_name == 'pool5': |
|
|
|
vgg_list = [pool5] |
|
elif layer_name == 'all': |
|
vgg_list = [relu1_2, relu2_2, relu3_2, relu4_2, relu5_2] |
|
|
|
|
|
|
|
return vgg_list |
|
|
|
class vgg19_class_fea(nn.Module): |
|
|
|
def __init__(self, pretrained_path = './experiments/vgg19-dcbb9e9d.pth', require_grad = False): |
|
super(vgg19_class_fea, self).__init__() |
|
self.vgg_model = models.vgg19() |
|
print('----load pretrained vgg19----') |
|
self.vgg_model.load_state_dict(torch.load(pretrained_path)) |
|
print('----load done!----') |
|
self.vgg_feature = self.vgg_model.features |
|
self.avgpool = self.vgg_model.avgpool |
|
self.classifier = self.vgg_model.classifier |
|
|
|
self.seq_list = [nn.Sequential(ele) for ele in self.vgg_feature] |
|
if not require_grad: |
|
for parameter in self.parameters(): |
|
parameter.requires_grad = False |
|
|
|
def forward(self, x): |
|
|
|
x = vgg_preprocess(x) |
|
|
|
for i in range(len(self.seq_list)): |
|
x = self.seq_list[i](x) |
|
if i == 31: |
|
relu5_2 = x |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x_class = self.classifier(x) |
|
return x_class, relu5_2 |