File size: 17,546 Bytes
3524ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import cv2
import pytesseract
import os
import requests
from flask import Flask, request, jsonify
from queue import Queue
from threading import Thread
from io import BytesIO
import numpy as np
import urllib.request
import requests
import json
app = Flask(__name__)
image_queue = Queue()
# Path to the Tesseract OCR executable (change it to your specific installation path)
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
# Function to extract text from an image using PyTesseract OCR
def enhance_contrast(image):
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
lab_planes = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8, 8))
lab_planes = list(lab_planes)
lab_planes[0] = clahe.apply(lab_planes[0])
lab = cv2.merge(lab_planes)
enhanced_image = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
return enhanced_image
def extract_text_from_image(image):
enhanced_image = enhance_contrast(image)
gray = cv2.cvtColor(enhanced_image, cv2.COLOR_BGR2GRAY)
text = pytesseract.image_to_string(gray)
return text.strip()
def process_image_result(initial_url, final_url, taskId, userId, type):
if type == 'post-like':
process_post_like(initial_url, final_url, taskId, userId)
elif type == 'reel-like':
process_reel_like(initial_url, final_url, taskId, userId)
elif type == 'follow':
process_follow_status(initial_url, final_url, taskId, userId)
else:
return
# Remove the processed image URLs from the queue
image_queue.task_done()
# Check if there are more images in the queue
if not image_queue.empty():
# Get the next image URLs from the queue
next_image_urls = image_queue.get()
# Ensure next_image_urls is a dictionary-like object
if isinstance(next_image_urls, dict):
# Extract the URLs
next_initial_url = next_image_urls.get('initial_url')
next_final_url = next_image_urls.get('final_url')
next_taskId = next_image_urls.get('taskId')
next_userId = next_image_urls.get('userId')
next_type = next_image_urls.get('type')
# Process the next image in the queue
process_image_result(next_initial_url, next_final_url, next_taskId, next_userId, next_type)
else:
# All images have been processed
response_data = jsonify(
{
"result":"All images processed"
}
)
print(response_data.get_json())
# # Send the response_data to the specified URL
# url = 'https://project-b-olive.vercel.app/api/ml/get-result'
# response = requests.post(url, json=response_data.get_json())
# print(response.json()) # Print the response from the URL
# Convert response_data to a JSON string
response_payload = json.dumps(response_data.get_json())
headers = {'Content-Type': 'application/json'}
# Send the response_payload as the payload to the specified URL
url = 'https://project-b-olive.vercel.app/api/ml/get-result'
response = requests.post(url, data=response_payload, headers=headers)
print(response.json()) # Print the response from the URL
# Function to process the image result
def process_post_like(initial_url, final_url, taskId, userId):
with app.app_context():
try:
initial_image = urllib.request.urlopen(initial_url)
final_image = urllib.request.urlopen(final_url)
initial_np_arr = np.asarray(bytearray(initial_image.read()), dtype=np.uint8)
final_np_arr = np.asarray(bytearray(final_image.read()), dtype=np.uint8)
initial_screenshot = cv2.imdecode(initial_np_arr, cv2.IMREAD_COLOR)
final_screenshot = cv2.imdecode(final_np_arr, cv2.IMREAD_COLOR)
except Exception as e:
return jsonify({'status': 'fail', 'code': 500, 'message': str(e)}), 500
# Set the region of interest (ROI) coordinates for the like count as a percentage of the screen size
roi_x = 0 # Convert to percentage
roi_y = 0 # Convert to percentage
roi_width = initial_screenshot.shape[1] # Convert to percentage
roi_height = initial_screenshot.shape[0] # Convert to percentage
# Set the region of interest (ROI) for the like count in the initial and final screenshots
initial_roi = initial_screenshot[int(roi_y * initial_screenshot.shape[0] / 100):int((roi_y + roi_height) * initial_screenshot.shape[0] / 100),
int(roi_x * initial_screenshot.shape[1] / 100):int((roi_x + roi_width) * initial_screenshot.shape[1] / 100)]
final_roi = final_screenshot[int(roi_y * final_screenshot.shape[0] / 100):int((roi_y + roi_height) * final_screenshot.shape[0] / 100),
int(roi_x * final_screenshot.shape[1] / 100):int((roi_x + roi_width) * final_screenshot.shape[1] / 100)]
initial_red_pixels = np.sum(initial_roi[:, :, 2] > 0)
final_red_pixels = np.sum(final_roi[:, :, 2] > 0)
if final_red_pixels > initial_red_pixels:
result = "User liked the post!"
user_liked = 1
elif final_red_pixels < initial_red_pixels:
result = "User unliked the post."
user_liked = 0
else:
result = "No change in like status."
user_liked = 0
# response_data = jsonify({'status': 'success', 'code': 200, 'message': result, 'data': {'result': user_liked, 'taskId': taskId, 'userId': userId}})
response_data = jsonify(
{
"taskId": taskId,
"userId": userId,
"result": user_liked
}
)
print(response_data.get_json())
# # Send the response_data to the specified URL
# url = 'https://project-b-olive.vercel.app/api/ml/get-result'
# response = requests.post(url, json=response_data.get_json())
# print(response.json()) # Print the response from the URL
# Convert response_data to a JSON string
response_payload = json.dumps(response_data.get_json())
headers = {'Content-Type': 'application/json'}
# Send the response_payload as the payload to the specified URL
url = 'https://project-b-olive.vercel.app/api/ml/get-result'
response = requests.post(url, data=response_payload, headers=headers)
print(response.json()) # Print the response from the URL
def process_reel_like(initial_url, final_url, taskId, userId):
with app.app_context():
try:
initial_image = urllib.request.urlopen(initial_url)
final_image = urllib.request.urlopen(final_url)
initial_np_arr = np.asarray(bytearray(initial_image.read()), dtype=np.uint8)
final_np_arr = np.asarray(bytearray(final_image.read()), dtype=np.uint8)
initial_screenshot = cv2.imdecode(initial_np_arr, cv2.IMREAD_COLOR)
final_screenshot = cv2.imdecode(final_np_arr, cv2.IMREAD_COLOR)
except Exception as e:
return jsonify({'status': 'fail', 'code': 500, 'message': str(e)}), 500
# Set the region of interest (ROI) coordinates for the like count as a percentage of the screen size
roi_x = 0 # Convert to percentage
roi_y = 75 # Convert to percentage
roi_width = initial_screenshot.shape[1] # Convert to percentage
roi_height =10 # Convert to percentage
# Set the region of interest (ROI) for the like count in the initial and final screenshots
initial_roi = initial_screenshot[int(roi_y * initial_screenshot.shape[0] / 100):int((roi_y + roi_height) * initial_screenshot.shape[0] / 100),
int(roi_x * initial_screenshot.shape[1] / 100):int((roi_x + roi_width) * initial_screenshot.shape[1] / 100)]
final_roi = final_screenshot[int(roi_y * final_screenshot.shape[0] / 100):int((roi_y + roi_height) * final_screenshot.shape[0] / 100),
int(roi_x * final_screenshot.shape[1] / 100):int((roi_x + roi_width) * final_screenshot.shape[1] / 100)]
cv2.imshow("Initial ROI", initial_roi)
cv2.waitKey(0)
cv2.destroyAllWindows()
initial_red_pixels = np.sum(initial_roi[:, :, 2] )
final_red_pixels = np.sum(final_roi[:, :, 2])
if final_red_pixels > initial_red_pixels:
result = "User liked the post!"
user_liked = 1
elif final_red_pixels < initial_red_pixels:
result = "User unliked the post."
user_liked = 0
else:
result = "No change in like status."
user_liked = 0
# response_data = jsonify({'status': 'success', 'code': 200, 'message': result, 'data': {'result': user_liked, 'taskId': taskId, 'userId': userId}})
response_data = jsonify(
{
"taskId": taskId,
"userId": userId,
"result": user_liked
}
)
print(response_data.get_json())
# # Send the response_data to the specified URL
# url = 'https://project-b-olive.vercel.app/api/ml/get-result'
# response = requests.post(url, json=response_data.get_json())
# print(response.json()) # Print the response from the URL
# Convert response_data to a JSON string
response_payload = json.dumps(response_data.get_json())
headers = {'Content-Type': 'application/json'}
# Send the response_payload as the payload to the specified URL
url = 'https://project-b-olive.vercel.app/api/ml/get-result'
response = requests.post(url, data=response_payload, headers=headers)
print(response.json()) # Print the response from the URL
# def process_comment_status(initial_url, final_url, taskId, userId):
# with app.app_context():
# try:
# initial_image_response = requests.get(initial_url)
# initial_image_np_arr = np.asarray(bytearray(initial_image_response.content), dtype=np.uint8)
# initial_image = cv2.imdecode(initial_image_np_arr, cv2.IMREAD_COLOR)
# final_image_response = requests.get(final_url)
# final_image_np_arr = np.asarray(bytearray(final_image_response.content), dtype=np.uint8)
# final_image = cv2.imdecode(final_image_np_arr, cv2.IMREAD_COLOR)
# except Exception as e:
# return jsonify({'status': 'fail', 'code': 500, 'message': str(e)}), 500
# # Set the region of interest (ROI) coordinates for the comment text as a percentage of the image size
# roi_x = 0 # Convert to percentage
# roi_y = 75 # Convert to percentage
# roi_width = initial_image.shape[1] # Convert to percentage
# roi_height = 10 # Convert to percentage
# # Set the region of interest (ROI) for the comment text in the initial and final images
# initial_roi = initial_image[int(roi_y * initial_image.shape[0] / 100):int((roi_y + roi_height) * initial_image.shape[0] / 100),
# int(roi_x * initial_image.shape[1] / 100):int((roi_x + roi_width) * initial_image.shape[1] / 100)]
# final_roi = final_image[int(roi_y * final_image.shape[0] / 100):int((roi_y + roi_height) * final_image.shape[0] / 100),
# int(roi_x * final_image.shape[1] / 100):int((roi_x + roi_width) * final_image.shape[1] / 100)]
# initial_comment_text = extract_text_from_image(initial_roi)
# final_comment_text = extract_text_from_image(final_roi)
# if len(initial_comment_text) > 0 or len(final_comment_text) > 0:
# result = "User commented"
# user_commented = 1
# else:
# result = "No comment"
# user_commented = 0
# response_data = jsonify({
# "taskId": taskId,
# "userId": userId,
# "result": user_commented
# })
# print(response_data.get_json())
# # # Send the response_data to the specified URL
# # url = 'https://project-b-olive.vercel.app/api/ml/get-result'
# # response = requests.post(url, json=response_data.get_json())
# # print(response.json()) # Print the response from the URL
# # Convert response_data to a JSON string
# response_payload = json.dumps(response_data.get_json())
# headers = {'Content-Type': 'application/json'}
# # Send the response_payload as the payload to the specified URL
# url = 'https://project-b-olive.vercel.app/api/ml/get-result'
# response = requests.post(url, data=response_payload, headers=headers)
# print(response.json()) # Print the response from the URL
# image_queue.task_done()
def process_follow_status(initial_url, final_url, taskId, userId):
with app.app_context():
try:
initial_image_response = requests.get(initial_url)
initial_image_np_arr = np.asarray(bytearray(initial_image_response.content), dtype=np.uint8)
initial_image = cv2.imdecode(initial_image_np_arr, cv2.IMREAD_COLOR)
final_image_response = requests.get(final_url)
final_image_np_arr = np.asarray(bytearray(final_image_response.content), dtype=np.uint8)
final_image = cv2.imdecode(final_image_np_arr, cv2.IMREAD_COLOR)
except Exception as e:
return jsonify({'status': 'fail', 'code': 500, 'message': str(e)}), 500
height, width, _ = initial_image.shape
# Set the region of interest (ROI) coordinates for the follow button as a percentage of the screen size
roi_x = 0 # Convert to percentage
roi_y = 0 # Convert to percentage
roi_width = width # Convert to percentage
roi_height =30 # Convert to percentage
# Set the region of interest (ROI) for the follow button in the initial and final screenshots
initial_roi = initial_image[int(roi_y * height / 100):int((roi_y + roi_height) * height / 100),
int(roi_x * width / 100):int((roi_x + roi_width) * width / 100)]
final_roi = final_image[int(roi_y * height / 100):int((roi_y + roi_height) * height / 100),
int(roi_x * width / 100):int((roi_x + roi_width) * width / 100)]
# Apply OCR to extract text from the region of interest in the initial and final screenshots
initial_text = extract_text_from_image(initial_roi)
final_text = extract_text_from_image(final_roi)
# Process the extracted text to consider only the following text
# initial_text = initial_text.split("Following", 1)[-1].strip()
# final_text = final_text.split("Following", 1)[-1].strip()
# Check if the follow button text has changed from the initial to the final screenshot
result = ""
if "Follow" in initial_text and "Following" in final_text and "Following" not in initial_text:
result = "User followed on Instagram!"
user_followed = 1
elif "Following" in initial_text and "Follow" in final_text and "Following" not in final_text:
result = "User unfollowed on Instagram!"
user_followed = 0
else:
result = "No change in follow status."
user_followed = 0
response_data = jsonify({
"taskId": taskId,
"userId": userId,
"result": user_followed
})
print(response_data.get_json())
# # Send the response_data to the specified URL
# url = 'https://project-b-olive.vercel.app/api/ml/get-result'
# response = requests.post(url, json=response_data.get_json())
# print(response.json()) # Print the response from the URL
# Convert response_data to a JSON string
response_payload = json.dumps(response_data.get_json())
headers = {'Content-Type': 'application/json'}
# Send the response_payload as the payload to the specified URL
url = 'https://project-b-olive.vercel.app/api/ml/get-result'
response = requests.post(url, data=response_payload, headers=headers)
print(response.json()) # Print the response from the URL
@app.route('/receive-image', methods=['POST'])
def receive_image():
initial_url = request.json['initial_url']
final_url = request.json['final_url']
taskId = request.json['taskId']
userId = request.json['userId']
type = request.json['type']
# Add the image URLs and task_id to the queue
image_queue.put((initial_url, final_url, taskId, userId, type))
process_thread = Thread(target=process_image_result, args=(initial_url, final_url, taskId, userId, type))
process_thread.start()
return jsonify({'status': 'success', 'code': 200, 'message': 'Images received',
'data': {'received': 1, 'queue_position': image_queue.qsize(), 'task_id': taskId, 'userId': userId}}), 200
@app.errorhandler(404)
def not_found_error(error):
return jsonify({'status': 'error', 'code': 404, 'message': 'Resource not found'}), 404
@app.errorhandler(500)
def internal_server_error(error):
return jsonify({'status': 'fail', 'code': 500, 'message': 'Internal server error'}), 500
if __name__ == '__main__':
app.run(debug=True)
|