metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: Har_Finetuned-ViT-Hybrid
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
config: har
split: train
args: har
metrics:
- name: Accuracy
type: accuracy
value: 0.8994708994708994
Har_Finetuned-ViT-Hybrid
This model is a fine-tuned version of google/vit-hybrid-base-bit-384 on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3383
- Accuracy: 0.8995
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7923 | 1.0 | 167 | 0.4420 | 0.8698 |
0.5555 | 2.0 | 334 | 0.3811 | 0.8820 |
0.4734 | 3.0 | 501 | 0.3448 | 0.8958 |
0.4019 | 4.0 | 668 | 0.3521 | 0.8926 |
0.3622 | 5.0 | 835 | 0.3505 | 0.8926 |
0.2921 | 6.0 | 1002 | 0.3383 | 0.8995 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2